3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подробный пример расчета столбчатого фундамента

Подробный пример расчета столбчатого фундамента

Зачем производить расчет фундамента?

Перед тем как начать строить дом, нужно сначала провести все необходимые расчеты. Есть фундаменты, которые просчитываются достаточно легко – это плитные и ленточные, а есть более сложные варианты – столбчатые. У этих фундаментов есть одно неоспоримое преимущество – их можно дорабатывать (специальные подошвы и расширения), но это скорее исключение, чем правило.

Возвести столбчатый фундамент возможно не применяя грузоподъемную технику и спецтранспорт.

Основываются расчеты столбчатого фундамента сразу на нескольких факторах – масса дома и масса фундамента, а вот масса здания формируется из целого ряда показателей, часть из которых учитывается, а часть (при частном строительстве) можно смело отбросить. Для столбчатого фундамента совершенно не играет роли среднегодовая сила ветра и сейсмическая активность региона, потому что на маленький дом эти силы имеют минимальное воздействие, которое принимается за нуль.

Все основные факторы должны быть учтены максимально верно, чтобы в итоге не возникало неожиданностей.

Обычно столбчатый фундамент применяется в крайних случаях, поэтому для примера расчета можно использовать одноэтажный сруб из хвойных деревьев (дуб используется в XXI веке нечасто из-за несоразмерной дороговизны), с периметром 9×10 м и длиной простенков 15 м.
Расчет внешних и внутренних стен

Схема столбчатого фундамента.

У каждого строительного материала есть свои особенности, которые упрощают или усложняют работу. При расчете деревянных домов очень удобным фактором считается, что толщина у простенков и внешних стен разнится в два раза (внешние толще), что в значительной мере упрощает работу.

Разные типы древесины имеют различную массу, но средняя из расчета на 1 м² – 70-100 кг. Эти числа при малогабаритном строительстве позволяют игнорировать тип древесины, потому что итоговый результат будет различаться крайне незначительно. Единственный нюанс – это толщина стен, которая превосходит базовую в 2 раза (базовая составляет 15 см), то есть отсчет идет не от 70-100, а от 140-200 кг/м².

Малая масса деревянных стен обусловлена их природной физической легкостью. Такие стены не отвечают самым высоким физическим показателям, но с задачей удержания тепла справляются гораздо лучше бетонных. Единственное, что важно не забыть – это закрыть все отверстия паклей при выполнении работы.

Чтобы масса была идеально точной у сруба, нужно заранее знать точное количество стен и простенков, а также возможность их добавления в ходе эксплуатации. В данном случае добавочные простенки исключаются.
Расчет перекрытий цоколя и между этажами

Схема перекрытия цоколя.

Перекрытия рассчитываются проще всего, потому что подсчитать площадь дома несложно (длина помноженная на ширину), а дальше дело техники. Но существует три вида перекрытий – плитные, деревянные и монолитные, причем плиты и дерево имеют свои подпункты. В расчетах сруба нельзя использовать монолитные перекрытия, нежелательны и пустотные плиты между этажами. Таким образом, остаются всего три варианта:

  1. Перекрытие из дерева с легким утеплителем (200 кг/м³), чья масса у цоколя составляет 100-150 кг/м², а между этажами 70-100 кг/м².
  2. Перекрытие из дерева с тяжелым утеплителем (500 кг/м³), что масса у цоколя составляет 200-300 кг/м², а между этажами 150-200 кг/м².
  3. Железобетонные плиты, которые используются исключительно для организации цокольной части здания. Масса их много больше – 400 кг/м², но это оправдывается их выработкой.

При строительстве дома на столбчатом фундаменте оптимальным решением служат железобетонные плиты для цоколя – они идеально удерживают нагрузки, с которыми не справится даже ростверк.

У дерева в свою очередь есть свои преимущества – оно достаточно недорогое, а вместе с этим идеально защищает от температур снаружи дома. Единственный серьезный минус – это недолговечность. Если для основания используется не дуб, то даже столбчатый фундамент не спасет дерево от гниения (дерево приподнято над грунтом, что значительно оберегает его от влаги).
Какая кровля лучше?

Пример возведения кровли.

На этот вопрос нет однозначного ответа, но чаще всего на срубах можно углядеть натуральную кровлю, битумную черепицу, шифер и металл. Исключения встречаются, но не так уж часто, чтобы заострять на них внимание.

Массы можно распределить следующим образом в порядке возрастания:

  1. Битумная черепица легче всех своих собратьев, так как выделяется не только среди всех вариантов черепицы, но и среди синтетических аналогов – всего 8 кг/м². Интереснейший внешний вид и простота монтажа добавляют ей привлекательности. Есть у нее и два минуса – неустойчивость к резким перепадам температур, а также высокая цена. Именно цена обычно удерживает людей от ее приобретения.
  2. Натуральная кровля весит всего 15-20 кг/м². Это практически бесплатный кровельный материал, который надо регулярно заменять. Визуальный эффект зависит от рук мастера, но кровля почти всегда хорошо смотрится. Единственный минус – короткий срок эксплуатации.
  3. Металл. Непривычно видеть металл достаточно легким материалом, но 30 кг/м² доказывают, что такое возможно (для сравнения керамическая черепица в 4 раза тяжелее). Металл легко монтируется, долго служит и не пропускает воду, но есть и серьезный минус – никакой теплоизоляции, а звук при малейших ошибках монтажа только усиливается.
  4. Шифер из легких материалов оказался тяжелее всех – 50 кг/м². Его дешевизна и доступность в любом уголке планеты обязывает включить его в общий список. В советское время он получил широкое распространение, и технология его изготовления была отточена до высочайшего уровня.

При расчете к каждой стене прибавляется 1 м, поскольку кровля с каждой стороны дома выходит на 50 см.

На этом же этапе рассчитывается количество осадков, воздействующих на дом в связи с тем, что за площадь воздействия принимается площадь кровли. На юге показатели небольшие – 50 кг/м², на севере 200 кг/м², а в средней полосе России 100 кг/м². Эти данные можно использовать, как аксиому при строительстве зданий до 5 этажей.
Пример расчета столбчатого фундамента

Варианты столбчатого фундамента на пучинистом и непучинистом грунтах.

Перед тем, как проводить расчет диаметра столбчатого фундамента, нужно найти массу дома, массу ростверка, фундамента, а потом и площадь соприкосновения фундамента с почвой.

Первым делом высчитываются все внутренние и наружные стены дома, а также площадь соприкосновения их и столбчатого фундамента.

При подсчете внешних стен нужно помнить, что их толщина в 2 раза больше стандартной, а простенки равны ей. Т.о. выводится формула:

S=P×2×h+l×h, где P – это периметр дома, l – суммарная длина всех простенков дома, коэффициент 2 – отношение периметра к стандарту, h – высота стен. S=((9+10)×2)×2×2,7+15×2,7=205,2+40,5=245,7 м².

Есть и другие способы подсчета, но этот самый простой, к тому же погрешность с ним равноценна всем остальным вариантам.

Далее нужно вычислить площадь основания стен, что значительно проще.

Sосн=(P×2+l)×y, где за y принимается толщина стены.

Sосн=(38×2+15)×0,15=13,65 м² (лучше принять за 13, чтобы обеспечить в итоге более качественный столбчатый фундамент).

Для того чтобы найти массу деревянных стен, достаточно просто перемножить площадь на показатели массы на 1 м² (средние в данный момент). M=S×85=245,7×85=20884,5 кг.

Пример гидроизоляции и армирования столбов фундамента.

Перекрытия подсчитать гораздо проще. Для этого в качестве цоколя в пример пойдут железобетонные плиты, а под крышу деревянное межэтажное перекрытие с тяжелым утеплителем.

  • M=S×Mпер, где S – это площадь дома, а Mпер – масса перекрытия на 1 м²;
  • M1=S×Mплиты=9×10×400=36000 кг;
  • M2=S×Mдерева=9×10×175=15750 кг;
  • Mсум=M1+M2=36000+15750=51750 кг.

Подсчитать массу кровли тоже не составит труда, главное, не забывать про осадки с учетом холодного региона. Кровля будет указана из битумной черепицы:

  • Mкров=S×m=10×11×8=880 кг;
  • Mос=10×11×100=11000 кг;
  • Mсум=Mкров+Mос=11880 кг.

Для наглядности можно воспользоваться таблицей:

Вид стенМасса стенМасса перекрытийМасса кровлиСумма, кг
Кругляк20884,5517501188084514,5

Важно хорошо закрепить ростверок на столбах фундамента, чтобы избежать вытек бетона.

Теперь можно начинать считать ростверк и фундамент
Ростверк высчитывается по суммарной длине стен без коэффициентов (ширина 0,5 м), а толщина его стандартная – 0,4 м. Масса раствора бетона у ростверка и фундамента принимается за 2400 кг/м³.

M=(P+l)×y×h×2400, где y – ширина фундамента, а h – его высота. M=(38+15)×0,5×0,4×2400=10,6×2400=25440 кг/м³.

Перед тем как проводить расчет диаметра столбчатого фундамента, нужно испробовать стандартный вариант в 0,3 м. Столбы ставятся с частотой 1 шт. на 1 м стены (ростверка). Глубина их залегания доходит до 1,6 м (глубина промерзания + 50 см), а высота над землей 0,4, что в сумме дает ровно 2 м.

При этом важно помнить, что самой меньшей устойчивостью к нагрузкам обладает песчаная поверхность – 20000 кг/м².

Пример расчета диаметра колонны выглядит следующим образом:

Опорная часть колонны составляет S=3,14×0,15×0,15=0,07 м², объем колонны V=S×h=0,07×2=0,14 м³.

Количество столбов lсум=P+l=38+15=53 м = 53 шт. Sсум=53×0,07=3,71 м².

Итоговая масса = 17808+25440+84514,5=127762,5 кг.

Чтобы узнать, подходят ли выбранные параметры колонн к дому, нужно разделить массу дома на площадь опоры: 127762,5/3,71=34437,33. Данные показатели почти в 1,5 раза превосходят положенную норму, из-за чего пример расчета диаметра особенно удачен, потому что придется увеличить объем столбов на 50% и одновременно на 25% увеличить их концентрацию. При увеличении только объема увеличится вместе с этим и масса, а для компенсации массы можно использовать повышение количества столбов в процентном соотношении вдвое меньше увеличенного объема.

На этом этапе возможно использование подошвы, что избавит от необходимости увеличивать площадь и количество, но добавит необходимость полного выкапывания грунта для ее установки.

С учетом всех вышеизложенных формул и расчетов можно подсчитать не только сруб, но и любой другой дом, в который идут более сложные или простые материалы. Единственная разница, которая может возникнуть в вычислениях – вид фундамента.

ПОДРОБНЫЙ ПРИМЕР РАСЧЕТА СТОЛБЧАТОГО ФУНДАМЕНТА

ПОДРОБНЫЙ ПРИМЕР РАСЧЕТА СТОЛБЧАТОГО ФУНДАМЕНТА
Перед тем как начать строить дом, нужно сначала провести все необходимые расчеты. Есть фундаменты, которые просчитываются достаточно легко – это плитные и ленточные, а есть более сложные варианты – столбчатые.
У этих фундаментов есть одно неоспоримое преимущество – их можно дорабатывать (специальные подошвы и расширения), но это скорее исключение, чем правило.Основываются расчеты столбчатого фундамента сразу на нескольких факторах – масса дома и масса фундамента, а вот масса здания формируется из целого ряда показателей, часть из которых учитывается, а часть (при частном строительстве) можно смело отбросить. Для столбчатого фундамента совершенно не играет роли среднегодовая сила ветра и сейсмическая активность региона, потому что на маленький дом эти силы имеют минимальное воздействие, которое принимается за нуль.
Все основные факторы должны быть учтены максимально верно, чтобы в итоге не возникало неожиданностей.

Пример расчета

Для наглядного объяснения рассмотрен расчет столбчатого фундамента для двухэтажного каркасного дома размерами 6 на 6 метров.

Пример представлен на основе следующих исходных данных:

  • стены толщиной 150 мм, площадь — 100 м2;
  • кровля металлическая по деревянным стропилам с уклоном 25 градусов площадью 40 м2;
  • площадь перекрытий по деревянным балкам 72 м2;
  • снеговой район lV;
  • грунт основания — гравийный с глиной.

Рассчитываем нагрузки с учетом коэффициентов:

  • от стен = 100м 2*50 кг/м2*1,1 = 5500 кг;
  • от перекрытий = 72м2*150кг*1,1 = 11800 кг;
  • от кровли = 40м2*60кг/м2*1,1 = 2640 кг.

Чтобы рассчитать собственный вес фундаментов принимаем его ширину 400 мм. Предварительно принимается 1 столб на каждые 2 метра периметра здания. Для данного примера 24/2 = 12 шт. Глубина промерзания грунта для выбранного климатического района (по СП «строительная климатология») 1,8 м. Столб должен опираться на 0,2 м ниже глубины промерзания и выходить из земли на 0,5 м. Такое заглубление необходимо, чтобы предотвратить опрокидывание или выпирание при воздействии сил морозного пучения. Получаем значение 2,5 м.

  • масса всех столбов равна 1,3 *2,5м*0,4м*0,4м*12шт*2500кг/м3 = 15600 кг;
  • полезная долговременная нагрузка 150кг/м2*72м2*1,2 = 12960 кг;
  • снеговая нагрузка = 240кг/м2*1,4*40м2 = 13440 кг.

Сумма всех значений составляет 61940 кг.

S = 61940кг/4,0 кг/см2 = 15485см2 на все столбы.

Площадь одного столба = 40см*40см = 1600 см2.

Количество столбов в этом примере на весь фундамент = 15485/1600 = 9,67 шт. Принимаем 10 шт.

В данном случае 4 столба будут располагаться по углам, а остальные 6 необходимо расположить по периметру. Части здания, сильно различающиеся по весу необходимо рассчитывать отдельно и располагать на независимых друг от друга фундаментах (например, основная часть дома и летняя веранда).

nanoCAD Конструкции

nanoCAD Конструкции – это специализированное решение для проектирования монолитных и сборных конструкций марок КЖ и КЖИ. В программе предусмотрен функционал, позволяющий производить расчеты ленточных и столбчатых фундаментов. Мощное графическое ядро с прямой поддержкой формата .dwg, позволит упростить процесс оформления конструкторской документации и выпуска чертежей.

  • Все версии
  • Скачать
  • Цены

NanoCAD Конструкции состоит из трех модулей:

  • nanoCAD Конструкции – Оформление;
  • nanoCAD Конструкции – КЖ;
  • nanoCAD Конструкции – Фундаменты.

nanoCAD Конструкции — Оформление

Компонент входит в комплект каждого из модулей NanoCAD Конструкции. Его назначение состоит в настройке и оформлении комплекта проектной документации в соответствии с принятыми стандартами.

  • общие настройки элементов программы;
  • настройка свойств слоев;
  • создание и сохранение профилей настроек для их дальнейшего использования;
  • создание строительных осей;
  • установка высотных отметок;
  • расстановка выносок;
  • отрисовка разрезов и сечений;
  • нанесение текстовых надписей;
  • редактирование записной книжки;
  • отрисовка штриховок;
  • создание и редактирование форм спецификаций, таблиц, штампов.

nanoCAD Конструкции – КЖ

nanoCAD Конструкции – КЖ предназначен для проектирования чертежей марок КЖ и КЖИ в соответствии с российскими стандартами. Модуль будет интересен для специалистов конструкторских отделов.

  • Подготовка чертежей марок КЖ и КЖИ в соответствии с российскими и украинскими стандартами;
  • инструменты схематичного и детального армирования;
  • контроль в соответствии со СНиП 2.03.01-84 и СП 52-101-2003;
  • автоматическое специфицирование арматурных изделий;
  • автоматическое проектирование и специфицирование сварных сеток по ГОСТ 23279-85;
  • создание арматурных изделий произвольных конфигураций;
  • автоматическое очерчивание изделий: хомутов, шпилек, спиралей, фиксаторов и т.д.;
  • создание и использование стандартных пользовательских закладных изделий;
  • автоматическое формирование спецификаций и ведомостей;
  • выбор и создание перемычек;
  • раскладка плит перекрытий на участках перекрытия с возможностью редактирования участка.

Схематичное армирование

Возможности:
  • Создание и параметризация линейных элементов армирования (;
  • автоматическое присвоение ранее отрисованной арматуре соответствующие классы;
  • отрисовка на чертеже линейных элементов армирования с возможностью присвоения параметров (стержни, детали и закладные изделия);
  • преобразование примитивов чертежа в параметрические объекты;
  • создание участков распределения арматуры произвольных конфигураций;
  • автоматическое формирование сечения арматурной сетки и групп сеток с обозначением марки;

Инструменты армирования железобетонных конструкций

Возможности:
  • детальная отрисовка арматурных стержней и деталей;
  • распределение по заданной площади и заданному направлению отрисованных деталей и стержней;
  • возможность управлять включением элемента армирования в состав конструкции и спецификации при его создании и редактировании;
  • учет и занесение в ведомости всех отрисованных элементов армирования;
  • установка порядка следования элементов чертежа;
  • задание границ защитного слоя;
  • работа с арматурной спиралью.

Закладные изделия

Возможности:
  • база данных закладных изделий по серии 1.400-15;
  • элементы металлопроката, включая листовой прокат (ГОСТ 103-76, ГОСТ 82-70, ГОСТ 8568-77, ГОСТ 19904-90, ГОСТ 19903-74);
  • отображение сварных швов.

Арматурные изделия

Набор инструментов позволяет разрабатывать чертежи сварных сеток и каркасов.

Читать еще:  Декор старого стола своими руками

  • автоматический контроль диаметров продольных и поперечных стержней по условиям сварки и соответствие габаритов сетки разрешенным параметрам;
  • набор диаметров автоматически изменяется в соответствии с нормативным документом, принятым на стадии начала работы над проектом (СНиП 2.03.01-84 или СП 52-101-2003);
  • автоматическая генерация марки изделия для вставки в спецификацию;
  • масса изделия вычисляется автоматически;
  • формирование нестандартных арматурных изделий.

Плиты перекрытий

Возможности:
  • автоматическая раскладка плит по заданному участку, подбор нескольких вариантов раскладки с использованием плит из базы проекта;
  • распределение монолита по участку;
  • слияние и разбиение монолитных участков в пределах раскладки;
  • замена плиты на монолитный участок и наоборот, а также замена плиты на плиту другого размера;
  • формирование спецификаций плит перекрытий на этаж, объект, по выбору на чертеже;
  • подсчет в спецификации к схеме раскладки плит перекрытия количества закладных изделий, отрисованных на чертеже раскладки плит с использованием инструмента Условное изображение элемента раздела Схематичное армирование.

Результатом применения инструментов программы являются полностью оформленные чертежи марок КЖ и КЖИ. Сроки выполнения проектных работ снижаются минимум на 30%. В качестве примера приводим чертеж перекрытия, выполненный средствами программы nanoCAD Конструкции (рис. 5).

nanoCAD Конструкции – Фундаменты

Назначение модуля nanoCAD Конструкции – Фундаменты – подготовка схем и чертежей столбчатых фундаментов на свайном и естественном основании, включая расчет основания по деформациям для фундаментов колонн промышленных и гражданских зданий, расчет свайного куста на прочность по несущей способности сваи и расчет монолитных и сборных ленточных фундаментов.

Основные функциями:
  • Расчет, конструирование и получение комплекта рабочих чертежей столбчатых фундаментов на свайном и естественном основании.
  • Расчет, конструирование и получение комплекта рабочих чертежей монолитных и сборных ленточных фундаментов на свайном и естественном основании.
  • Отрисовка свайных оснований различных конфигураций (с автоматическим графическим разделением элементов, различающихся по параметрам) и получение поэтапных и суммарных спецификаций по свайным полям.
  • Оформление выходной документации средствами модуля «Оформление» в строгом соответствии с требованиями СПДС.
Нормативные документы:
  • СНиП 2.02.01-83 Основания зданий и сооружений;
  • Пособие по проектированию оснований зданий и сооружений (Москва, 1986 г.);
  • СНиП 2.02.03-85 Свайные фундаменты;
  • СП 50-102-2003 Проектирование и устройство свайных фундаментов;
  • СНиП 2.01.07-85 Нагрузки и воздействия.

Столбчатые фундаменты на естественном основании

Столбчатые фундаменты на свайном основании

Монолитные ленточные фундаменты на свайном основании

  • Расчет монолитного ленточного фундамента с формированием файла отчета по результатам.
  • Отрисовка свайного основания в соответствии с результатами расчета.
  • Раскладка верхних и нижних сеток подошвы или отдельных стержней на схеме расположения по данным расчета.
  • Формирование спецификации арматурных изделий и стержней, входящих в состав монолитного ленточного фундамента.
  • Получение ведомости расхода стали на монолитный ленточный фундамент.
  • Формирование и автоматическая отрисовка разреза по данным маркера фундамента.

Сборные ленточные фундаменты на естественном основании и стены из блоков ФБС и ФБП

  • Расчет по деформациям ленточных фундаментов, проектирование и раскладка в управляемом автоматическом режиме фундаментных плит на схеме расположения.
  • Возможность сплошной или прерывистой раскладки фундаментных плит.
  • Раскладка в полуавтоматическом режиме фундаментных блоков в развертках стен.
  • Удобный сервисный аппарат редактирования раскладки блоков и фундаментных плит.
  • Раскладка (в полуавтоматическом режиме) рандбалок на схеме расположения фундаментов.
  • Автоматическая маркировка стеновых блоков и рандбалок на чертеже в соответствии с позициями в спецификации.
  • Минимизация объема монолитных заделок при раскладке сборных блоков и фундаментных плит.
  • Автоматический подсчет расхода монолитного бетона в развертках стен из сборных блоков и в сборных ленточных фундаментах, учет его в спецификациях.
  • Полный набор спецификаций к схемам расположения.
  • Формирование и автоматическая отрисовка разреза по данным маркера сборного ленточного фундамента.

Свайные ленточные ростверки и поля

  • Трассировка и вычерчивание однорядных и многорядных свайных лент линейной, дуговой или круговой конфигурации с шахматной или рядовой расстановкой свай.
  • Наличие сервисного аппарата, позволяющего размещать заданное количество свай или же задавать расстояния между ними с широкими возможностями манипулирования «остатком».
  • Отрисовка и редактирование контуров ростверков.
  • Вычерчивание свайных полей прямоугольного или кругового очертаний с шахматной или рядовой расстановкой свай, с заданным количеством свай или по заданным расстояниям между ними.
  • Автоматическая нумерация свай тремя различными способами.
  • Автоматическая визуальная индикация свай по их маркам и типам.
  • Автоматическая генерация спецификации и таблицы отметок.
  • Возможность многократных редакционных изменений, при которых ранее созданная нумерация, визуальная индикация и набор спецификаций автоматически обновляются по указанию пользователя.

Версии nanoCAD которые могут вас заинтересовать:

  • nanoCAD СПДС — создание чертежей в соответствии с отечественными стандартами.
  • nanoCAD Стройплощадка — разработка ППР и ПОС.
  • nanoCAD СПДС Металлоконструкции — подготовка чертежей марок КМ.

ЧТОБЫ СКАЧАТЬ ЗАПОЛНИТЕ ФОРМУ

После заполнения формы, ссылки на скачивание будут доступны.
Можно будет скачать бесплатную русскую версию nanoCAD Конструкции на месяц.

Пример расчета столбчатого фундамента

Фундамент — одна из основных несущих конструкций дома. Качество выполнения работ влияет на срок службы здания и его нормальную эксплуатацию (отсутствие трещин, кренов). Чтобы обеспечить надежность и устойчивость, необходим не только тщательный контроль на стадии строительства, но и грамотный расчет столбчатого фундамента.

Принцип работы и требования

Столбчатый фундамент представляет собой несколько столбов, объединенных с помощью ростверка (горизонтальная обвязка). Ростверк необходим для совместной работы отдельно стоящих конструкций. Чтобы обеспечить устойчивость и предотвратить опрокидывание, столбы заглубляют в землю. Глубина заложения зависит от нагрузки от здания и характеристик грунта.

Несущая способность обеспечивается за счет опирания на грунт и поверхностного трения. В случае с фундаментом небольшой глубины трение возникает незначительное. Лучше всего данный тип конструкции подходит для возведения деревянного или каркасного дома с высотой два и более этажа. Возведение тяжелых каменных домов на таких фундаментах невозможно. Удельная масса стен здания не должна превышать 1000 кг на метр кубический.

Из-за небольшой несущей способности требуется, чтобы уровень грунтовых вод находился глубже подошвы фундамента минимум на 50 см. При наличии на участке слоя насыпных грунтов, их необходимо удалить и заменить песком средней крупности с послойным виброуплотнением (максимальный слой уплотнения 20 см).

Плюсы и минусы конструкции

К основным достоинствам можно отнести невысокую стоимость, которая обеспечивается за счет:

  • снижение объема земляных работ при возведении каркасного здания;
  • снижение количества необходимых материалов (по сравнению с ленточным фундаментом);
  • небольшое количество вынимаемого грунта не требует наличия крупной техники (самосвалы, экскаваторы).

К недостаткам можно отнести достаточно непредсказуемое поведение столбов при нарушении технологии возведения и ошибок на стадии проектирования. Еще одним минусом стала ограниченная область применения из-за невысокой несущей способности.

Подготовка к расчету
На стадии предварительной подготовки необходимо выяснить все исходные данные для расчета:

  • размеры здания в плане;
  • несущая способность основания (грунта);
  • нагрузка на фундамент от собственного веса и вышележащих конструкций.

Геологические изыскания

Многие при самостоятельном возведении каркасного дома пренебрегают изучением характеристик грунта. Важно изучить геологические условия площадки. При проектировании здания специалистами проводятся достаточно затратные геологические изыскания, которые включают в себя бурение и изучение полученного материала в лаборатории. Результатом проведения всех работ становятся точные значения всех характеристик, необходимых для расчета.

В условиях самостоятельного возведения каркасного здания можно выполнить визуальное исследование. Для этого проводят бурение или выкапывают яму на 50 см ниже предполагаемой подошвы фундамента дома. Важно определить тип грунта и убедится в отсутствии водонасыщенных слоев. Тип грунта понадобится при дальнейших расчетах.

Иногда необходимо выполнить проверку несколько раз в разных местах. Даже при условии хорошего качества основания в одной скважине, в почве может располагаться линза неустойчивого грунта. При небольшом ее размере можно попробовать ее обойти, но если она достаточно велика, придется остановиться на другом типе фундамента.

Сбор нагрузок

Нагрузки на здание могут быть временными и постоянными. Постоянные включают в себя вес всех элементов здания, а временные по СП «Нагрузки и воздействия» делятся на два вида: длительные и кратковременные. К длительным относится вес мебели и оборудования, а к кратковременным вес людей и осадки. При расчете в общем случае учитываются такие осадки как снег и ветер. Для фундаментов необходимо знать только вес снегового покрова.

Чтобы собрать постоянную нагрузку от всего здания требуется сосчитать:

  • вес стен;
  • вес перекрытий;
  • вес кровли;
  • собственный вес фундамента.

Массу конструкций можно свести в одну небольшую таблицу.

Тип конструкцииВес
Каркасные стены толщиной 150 мм с утеплителем30-50 кг/м 2
Перекрытие по деревянным балкам утепленное материалом плотностью до 200 кг/м 3100-150 кг/м 2
Собственный вес фундамента из железобетона2500 кг/м 3
Кровля с несущими конструкциями
Металлическая40-60 кг/м 2
Керамическая80-120 кг/м 2
Из гибкой черепицы50-70 кг/м 2

Важно! Необходимо не перепутать единицы измерения в таблице. Для всех конструкций, кроме фундаментов значения приведены для квадратного метра (толщина уже учтена).

Эти значения являются нормативными, для получения расчетных понадобится умножить их на специальный коэффициент надежности по нагрузке. Этот коэффициент приводится в СП «Нагрузки и воздействия». Для каркасного дома все значения представлены в таблице.

Тип конструкцииКоэффициент надежности по нагрузке
Деревянные1,1
Железобетонные плотностью более 1600 кг/м 31,3
Изоляционные слои, засыпки, стяжки изготавливаемые в заводских условиях1,2
Изоляционные слои, засыпки, стяжки изготавливаемые на строительной площадке1,3

По нормативным документам для жилых зданий нормативная полезная нагрузка (длительная временная) принимается равной 150 кг/м2. Для данного значения коэффициент надежности составляет 1,2. Отсюда получаем расчетное значение 180 кг/м2 площади пола.

Далее приступаем к нахождению нагрузки от снегового покрова. Для этого потребуется уже знакомый СП «Нагрузки и воздействия», в котором в таблице 10.1 указаны значения в зависимости от климатического района. Снеговой район определяется по картам, представленным в СП «Строительная климатология». Коэффициент надежности для снеговой нагрузки принимается 1,4.

Важно! При угле наклона кровли более 60 градусов снеговая нагрузка принимается равной нулю, поскольку при таком скате снег на крыше задерживаться не будет.

Порядок расчета

В первую очередь определяют минимальную площадь основания для всех столбов в сумме. Расчет проводят по формуле:

где Р — общий вес конструкций дома, найденный на этапе подготовки в килограммах;

Rо — расчетное сопротивление несущего слоя грунта (на который опирается фундамент) в килограммах на квадратный сантиметр.

Значение расчетного сопротивления можно свести в одну таблицу:

Тип грунта основанияRо на глубине 1,5 м и более, кг/см 2Rо у поверхности земли, кг/см 2
Галечный с глиной4,53
Гравийный с глиной4,02,7
Крупнозернистый песок6,04,0
Песок средней крупности5,03,33
Мелкозернистый песок4,02,7
Пылеватый песок2,01,33
Супесь или суглинок3,52,33
Глина6,04,0
Насыпной грунт с уплотнением или просадочный1,51,0
Насыпной грунт без уплотнения1,00,67

Важно! Строить на насыпном грунте крайне не рекомендуется. При нахождении его в геологии участка чаще всего выполняют полную замену на крупный или средний песок.

Вычислив значение суммарной площади столбов для каркасного дома, находят требуемые размеры подошвы для одного фундамента и их необходимое количество. В обязательном порядке опоры располагают по углам и примыканиям стен, по периметру распределяют равномерно.

Пример расчета

Для наглядного объяснения рассмотрен расчет столбчатого фундамента для двухэтажного каркасного дома размерами 6 на 6 метров.

Пример представлен на основе следующих исходных данных:

  • стены толщиной 150 мм, площадь — 100 м2;
  • кровля металлическая по деревянным стропилам с уклоном 25 градусов площадью 40 м2;
  • площадь перекрытий по деревянным балкам 72 м2;
  • снеговой район lV;
  • грунт основания — гравийный с глиной.

Рассчитываем нагрузки с учетом коэффициентов:

  • от стен = 100м 2*50 кг/м2*1,1 = 5500 кг;
  • от перекрытий = 72м2*150кг*1,1 = 11800 кг;
  • от кровли = 40м2*60кг/м2*1,1 = 2640 кг.

Чтобы рассчитать собственный вес фундаментов принимаем его ширину 400 мм. Предварительно принимается 1 столб на каждые 2 метра периметра здания. Для данного примера 24/2 = 12 шт. Глубина промерзания грунта для выбранного климатического района (по СП «строительная климатология») 1,8 м. Столб должен опираться на 0,2 м ниже глубины промерзания и выходить из земли на 0,5 м. Такое заглубление необходимо, чтобы предотвратить опрокидывание или выпирание при воздействии сил морозного пучения. Получаем значение 2,5 м.

  • масса всех столбов равна 1,3 *2,5м*0,4м*0,4м*12шт*2500кг/м3 = 15600 кг;
  • полезная долговременная нагрузка 150кг/м2*72м2*1,2 = 12960 кг;
  • снеговая нагрузка = 240кг/м2*1,4*40м2 = 13440 кг.

Сумма всех значений составляет 61940 кг.

S = 61940кг/4,0 кг/см2 = 15485см2 на все столбы.

Площадь одного столба = 40см*40см = 1600 см2.

Количество столбов в этом примере на весь фундамент = 15485/1600 = 9,67 шт. Принимаем 10 шт.

В данном случае 4 столба будут располагаться по углам, а остальные 6 необходимо расположить по периметру. Части здания, сильно различающиеся по весу необходимо рассчитывать отдельно и располагать на независимых друг от друга фундаментах (например, основная часть дома и летняя веранда).

Увидев пример, можно понять, что выполнить необходимые расчеты может даже не специалист. Это не займет большого количества времени, но позволит избежать большого количества проблем при эксплуатации. Важно учитывать климатический район строительства и массу основных конструкций. При недостаточной несущей способности фундаментов может происходить растрескивание стен или опрокидывание всего дома.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Подробный пример расчета столбчатого фундамента

Ессентуки

ул. Новопятигорская, д. 41

Вологда

ул. Ленина, д.3, оф.306

Многоканальный номер

Project StudioCS Фундаменты 5.6

Основной особенностью модуля «Фундаменты» является разумная минимизация исходных данных при максимальном объеме получаемых результатов с отчетливым акцентом на использование гибких диалоговых режимов. Программные модули постоянно генерируют подсказки, сообщения о состоянии программы, заключения о причинах неудач, блокируют некорректные действия пользователя и предоставляют ему возможность возврата на любом этапе расчета или проектирования.

Пакет ориентирован на возможности полуавтоматического диалогового режима и располагает удобным сервисным аппаратом, позволяющим легко добиваться желаемых результатов:

  • при расстановке свай в многорядных ростверках;
  • при раскладке стеновых блоков в развертках стен подвалов;
  • при раскладке плит ленточных фундаментов сплошной или прерывистой раскладки;
  • при размещении фундаментных балок на схеме расположения.

Сервисный аппарат программы помогает находить оптимальные решения при расстановке свай в ленточных ростверках, а также при раскладке блоков, плит и рандбалок.

Полный комплект спецификаций формируется автоматически.

Столбчатые фундаменты на естественном основании

  • Расчет, проектирование и вычерчивание отдельного фундамента под сдвоенные одиночные железобетонные или металлические колонны произвольного положения и ориентации в плане в режиме прямой или обратной задачи (сборный и монолитный вариант исполнения для железобетонных колонн) (рис. 1 и 2).
  • Результирующая информация, размещаемая в поле сообщений диалогового окна, содержит сведения о характеристиках, определяющих параметры фундаментов.

Столбчатые фундаменты на свайном основании

    Расчет, проектирование и вычерчивание отдельного фундамента под сдвоенные одиночные железобетонные или металлические колонны произвольного положения и ориентации в плане в режиме прямой или обратной задачи (сборный и монолитный вариант исполнения для железобетонных колонн) (рис. 6);

Учет сейсмических воздействий при расчете фундаментов

Параметры, принимаемые в расчет для учета сейсмических воздействий (рис. 10):

  • балльность района строительства;
  • категория грунта по сейсмическим свойствам;
  • вероятность превышения сейсмической интенсивности;
  • класс ответственности здания по СНиП 2.01.07–85.

Введение параметров сейсмической опасности объекта обуславливает введение особых сочетаний усилий на обрезе фундамента (рис. 11).

Ленточные сборные фундаменты, развертки стен из блоков, рандбалки

  • Расчет по деформациям ленточных фундаментов, проектирование и раскладка в управляемом автоматическом режиме фундаментных плит на схеме расположения;
  • Возможность сплошной или прерывистой раскладки фундаментных плит (рис. 12);

Монолитные ленточные фундаменты на естественном основании

    Расчет монолитного ленточного фундамента с формированием файла отчета по результатам (рис. 14);

Монолитные ленточные фундаменты на свайном основании

    Расчет монолитного ленточного фундамента с формированием файла отчета по результатам (рис. 17);

Свайные ленточные ростверки и поля

  • Трассировка и вычерчивание однорядных и многорядных свайных лент линейной, дуговой или круговой конфигурации с шахматной или рядовой расстановкой свай;
  • Наличие сервисного аппарата, позволяющего размещать заданное количество свай или же задавать расстояния между ними с широкими возможностями манипулирования «остатком«;
  • Отрисовка и редактирование контуров ростверков;
  • Вычерчивание свайных полей прямоугольного или кругового очертаний с шахматной или рядовой расстановкой свай, с заданным количеством свай или по заданным расстояниям между ними;
  • Автоматическая нумерация свай тремя различными способами;
  • Автоматическая визуальная индикация свай по их маркам и типам;
  • Автоматическая генерация спецификации и таблицы отметок;
  • Возможность многократных редакционных изменений, при которых ранее созданная нумерация, визуальная индикация и набор спецификаций автоматически обновляются по указанию пользователя (рис. 20).

Инструменты оформления чертежей в соответствии с требованиями СПДС

В программе учтена возможность оформления чертежей в соответствии с требованиями СПДС. Информацию по этому разделу программы можно получить, ознакомившись с описанием программыProject StudioCS Конструкции 5.6.

Порядок расчета столбчатого фундамента

Перед тем как начинать возведение дома, сначала нужно детально все рассчитать и измерить, после чего только следует приступать к работе. Произвести расчет столбчатого фундамента достаточно сложно, т.к. даже под небольшой дом на таком основании может потребоваться несколько доработок.

Устройство столбчатого фундамента.

Основные материалы для возведения дома

Материалов для стен существует великое множество, но в данном случае нужно рассмотреть именно дом из бруса, чья масса составляет 160 кг/м . Данные показатели касаются толщины стен в 30 см, т.к. именно столько имеют несущие стены, но простенки нужно учитывать в 2 раза тоньше. Именно благодаря невысокой массе несущая способность столбчатого фундамента зачастую не нуждается в доработке.

Варианты столбчатых фундаментов.

В качестве межэтажных перекрытий обычно используется дерево с легким (80 кг/м ) или тяжелым (170 кг/м ) утеплителем. Для цоколя аналогичные перекрытия будут иметь массу 110 и 230 кг/м . Тут толщину пересчитывать не придется, т.к. она стандартная. В особых случаях, когда нужно добиться более качественного цоколя, можно воспользоваться железобетонными плитами (400 кг/м ), т.к. они не гниют от времени.

Расчет столбчатого фундамента требует попутно точно знать, какая будет кровля, а вместе с этим примерное местонахождение постройки. Оптимальный вариант — это битумная черепица или ондулин (8 кг/м ), но в связи с их синтетическим происхождением экстремальные температуры они не выдержат.

На 2 месте находится натуральная кровля (20 кг/м ), которая при правильной укладке пролежит и век, но обладает куда более слабым внешним видом. Металлическая кровля немного тяжелее (30 кг/м ), но полное отсутствие звукоизоляции делает ее нежелательной при накрывании жилых домов, тогда как для хозяйственных и технических построек лучшей кровли не найти. Но чаще всего можно увидеть дешевый и абсолютно неразнообразный материал — шифер (50 кг/м ), который доступен любому желающему, монтируется легко, а вместе с этим выдерживает колоссальные нагрузки.

Схема столбчатого фундамента с ростверком.

Видео по теме «расчет столбчатого фундамента»

Местоположение дома важно для того, чтобы можно было рассчитать максимальное годовое давление осадков на кровлю. В южной части страны это всего лишь 50 кг/м , в центральной полосе — 100 кг/м , а на самом севере — 170 кг/м . При этом нужно учитывать, что давление осуществляется именно на кровлю, которая выходит за пределы здания в каждую сторону на 0,5 м.

Под основанием дома всегда располагается ростверк, который проходит под всеми стенами, причем сечение его на всех промежутках одинаковое (в данном случае будет использовано 0,5*0,5 м). Масса 1 м железобетона составляет 2400 кг. Нужен ростверк для того, чтобы обеспечить предельное равновесие и устойчивость.

Сами столбы у фундамента рассчитываются исходя из этой же массы, но при необходимости можно доработать их при помощи расширения у основания, которое обеспечит большую площадь опоры на грунт с минимальным увеличением массы.

Базовые расчеты дома

Для начала нужно определиться, как будет выглядеть дом, из чего он будет сделан и где расположен. Допустим, дом из бруса будет иметь всего 1 этаж, причем цоколь оформлен железобетонными плитами, а межэтажное перекрытие из дерева с легким утеплителем. Периметр здания 9*11 м, а суммарная длина простенков — 15 м. Сам дом находится в центральной полосе страны, стоит на сухой глине, а кровля у него из шифера.

Таким образом, сначала нужно привести стены и простенки к общим показателям длины, а затем вычислить их суммарную массу:

L=P+l, где L — суммарная длина стен и простенков, P — периметр, l — длина простенков внутри дома.

Видео по теме «Расчет столбчатого фундамента (APM Civil Engineering 2010)»

M1=(P+l2)*3*m1, где M1 — масса всех стен и простенков, m1 — масса 1 м стены, 3 — стандартная высота стены в помещении.

Схема монтажа столбов.

Видео по теме «расчет столбчатого фундамента»

Затем вычисляется масса кровли и давление осадков на нее:

M2=(a+1)*(b+1)*(50+100), где a — длина дома, b — ширина, 50 — масса 1 м кровли, 100 — давление осадков на 1 м кровли.

Теперь можно вычислить суммарную массу 2 перекрытий сразу:

M3=S*(m2+m3), где S — площадь дома, m2 — масса 1 м цокольного перекрытия, m3 — 1 м межэтажного перекрытия.

Затем рассчитывается объем и масса ростверка:

V1=S2*L, где S2 — площадь сечения.

Видео по теме «Часть 3-4 Устройство столбчатого фундамента»

В самом конце считается фундамент. Для его расчета необходимо уточнить глубину залегания столбов и их сечение, после чего можно начинать расчет. Допустим, на 1 м приходится 1 столб, глубина залегания 2 м, а сечение 0,4*0,4 м. Тогда пример расчета столбчатого фундамента попутно позволяет подсчитать площадь опоры 1 столба:

V2=S3*h, где S3 — площадь сечения, а h — высота 1 столба.

M5=V2*L*1*2400, где 1 — это коэффициент соотношения столбов к 1 м.

Все полученные данные базового расчета можно внести в таблицу:

МатериалКаркас, кгКровля и осадки, кгПерекрытия, кгРостверк, кгСтолбы, кгМасса суммарная, кгПлощадь опоры, м
Брус22800180004752033000422401635608,8
Финальные работы с данными

Схема подготовки основания под незаглубленный столбчатый фундамент.

Теперь на руках есть все необходимые данные, но нужно узнать, возможно ли строительство. Несущая способность сухой глины — 25000 кг/м . Т.е. в данном случае для определения суммарной несущий способности надо 8,8*25000=220000 кг.

Если сравнить суммарную массу дома 163560 кг и ту, что может выдержать грунт 220000 кг, то строительство возможно (обязательно нужен запас, хотя бы на 40000 кг).

Но бывают такие ситуации, когда в ходе решения получается невозможность строительства, для чего применяется достаточно эффективное действие — расширение у основания. Естественно, масса изделия будет повышаться, но увеличение площади опоры несоразмерно, поэтому заранее подсчитывается, во сколько раз нужно увеличить основание, после чего работа пойдет как по маслу.

Приведенный выше пример расчета подходит далеко не только для столбчатого фундамента и дома из бруса, но и для всех аналогов, т.к. формулы универсальные.

Видео по теме «3.2 Пример расчета столбчатых фундаментов»

Единственное, что важно при расчете фундаментов, — это заранее точно узнать числа, которыми потом придется оперировать, иначе даже маленькая погрешность может вылиться в очень нехорошие последствия.

Project StudioCS Фундаменты

Project Studio CS Фундаменты — специализированное графическое приложение на базе AutoCAD, AutoCAD Architecture и AutoCAD MEP. Предназначено для подготовки схем расположения и чертежей фундаментов на свайном и естественном основаниях, включая расчет основания по деформациям для фундаментов колонн промышленных и гражданских зданий, сборных и монолитных ленточных фундаментов под кирпичные стены и фундаментные блоки, расчет свайного куста на прочность по несущей способности сваи.

  • Разработка чертежей марок КЖ и КЖИ в соответствии с отечественными стандартами в среде AutoCAD;
  • Работа в среде AutoCAD 2011, Autodesk Architectural Desktop 2005-2007 , AutoCAD Architecture 2011, Autodesk Building Systems 2005-2007 , AutoCAD MEP 2011;
  • Российская система для российских проектировщиков
  • Оформление выходной документации в соответствии со стандартами СПДС;
  • Расчет, конструирование и подготовка чертежей столбчатых фундаментов на естественном и свайных основаниях;
  • Расчет, конструирование и подготовка чертежей сборных ленточных фундаментов;
  • Расчет, конструирование и подготовка чертежей монолитных ленточных фундаментов на естественном и свайных основаниях;
  • Автоматизированная раскладка рандбалок и разверток стен подвалов из сборных бетонных блоков с получением спецификаций;
  • Отрисовка свайных фундаментов различных конфигураций (с автоматическим графическим разделением элементов, различающихся по параметрам) и получение спецификаций по свайным полям;
  • Использование совместно с программами Project Studio CS Архитектура 1.8 и Project Studio CS Конструкции 5.1 в одном сеансе работы;
  • Расчет и конструирование фундаментов производятся в соответствии со следующими нормативными документами:
    • СНиП 2.02.01-83* Основания зданий и сооружений;
    • Пособие по проектированию оснований зданий и сооружений (Москва, 1986 г.);
    • СНиП 2.02.03-85 Свайные фундаменты;
    • СП 50-102-2003 Проектирование и устройство свайных фундаментов;
    • СНиП 2.01.07-85* Нагрузки и воздействия.

Основной особенностью модуля «Фундаменты» является разумная минимизация исходных данных при максимальном объеме получаемых результатов с отчетливым акцентом на использование гибких диалоговых режимов. Программные модули постоянно генерируют подсказки, сообщения о состоянии программы, заключения о причинах неудач, блокируют некорректные действия пользователя и предоставляют ему возможность возврата на любом этапе расчета или проектирования.

Пакет ориентирован на возможности полуавтоматического диалогового режима и располагает удобным сервисным аппаратом, позволяющим легко добиваться желаемых результатов:

  • при расстановке свай в многорядных ростверках;
  • при раскладке стеновых блоков в развертках стен подвалов;
  • при раскладке плит ленточных фундаментов сплошной или прерывистой раскладки;
  • при размещении фундаментных балок на схеме расположения.

Сервисный аппарат программы помогает находить оптимальные решения при расстановке свай в ленточных ростверках, а также при раскладке блоков, плит и рандбалок.
Полный комплект спецификаций формируется автоматически.

Столбчатые фундаменты на естественном основании

  • Расчет, проектирование и вычерчивание отдельного фундамента под сдвоенные одиночные железобетонные или металлические колонны произвольного положения и ориентации в плане в режиме прямой или обратной задачи (сборный и монолитный вариант исполнения для железобетонных колонн) (рис. 1 и 2).
  • Результирующая информация, размещаемая в поле сообщений диалогового окна, содержит сведения о характеристиках, определяющих параметры фундаментов.

Столбчатые фундаменты на свайном основании

  • Расчет, проектирование и вычерчивание отдельного фундамента под сдвоенные одиночные железобетонные или металлические колонны произвольного положения и ориентации в плане в режиме прямой или обратной задачи (сборный и монолитный вариант исполнения для железобетонных колонн) (рис. 6).

Рис. 9. Грунты

Учет сейсмических воздействий при расчете фундаментов

Параметры, принимаемые в расчет для учета сейсмических воздействий (рис. 10):

  • балльность района строительства;
  • категория грунта по сейсмическим свойствам;
  • вероятность превышения сейсмической интенсивности;
  • класс ответственности здания по СНиП 2.01.07-85.

Введение параметров сейсмической опасности объекта обуславливает введение особых сочетаний усилий на обрезе фундамента (рис. 11).

Ленточные сборные фундаменты, развертки стен из блоков, рандбалки

  • Расчет по деформациям ленточных фундаментов, проектирование и раскладка в управляемом автоматическом режиме фундаментных плит на схеме расположения.
  • Возможность сплошной или прерывистой раскладки фундаментных плит (рис. 12).

Монолитные ленточные фундаменты на естественном основании

  • Расчет монолитного ленточного фундамента с формированием файла отчета по результатам (рис. 14).

Монолитные ленточные фундаменты на свайном основании

  • Расчет монолитного ленточного фундамента с формированием файла отчета по результатам (рис. 17).

Свайные ленточные ростверки и поля

  • Трассировка и вычерчивание однорядных и многорядных свайных лент линейной, дуговой или круговой конфигурации с шахматной или рядовой расстановкой свай.
  • Наличие сервисного аппарата, позволяющего размещать заданное количество свай или же задавать расстояния между ними с широкими возможностями манипулирования «остатком».
  • Отрисовка и редактирование контуров ростверков.
  • Вычерчивание свайных полей прямоугольного или кругового очертаний с шахматной или рядовой расстановкой свай, с заданным количеством свай или по заданным расстояниям между ними.
  • Автоматическая нумерация свай тремя различными способами.
  • Автоматическая визуальная индикация свай по их маркам и типам.
  • Автоматическая генерация спецификации и таблицы отметок.
  • Возможность многократных редакционных изменений, при которых ранее созданная нумерация, визуальная индикация и набор спецификаций автоматически обновляются по указанию пользователя (рис. 20).

Инструменты оформления чертежей в соответствии с требованиями СПДС

В программе учтена возможность оформления чертежей в соответствии с требованиями СПДС. Информацию по этому разделу программы можно получить, ознакомившись с описанием программы Project Studio CS Конструкции 5.1.

• Надежный столбчатый фундамент: расчет, разметка, заливка

ИмхоДом › Форумы › фундаменты и перекрытия › • Надежный столбчатый фундамент: расчет, разметка, заливка

  • В этой теме 1 участник и 0 ответов.
  • Наука

Первым делом следует обратить внимание на состав и особенности грунта, который располагается в районе строительной площадки.

Если грунт, находящийся там, обладает тенденцией к вспучиванию, столбчатый фундамент следует использовать с осторожностью, поскольку неграмотный монтаж фундамента такого типа на вспучивающихся почвах может повредить состоянию готового здания.

Чтобы избежать дефектов стен, способных возникнуть при вспучивании грунта, нужно грамотно установить опоры и соблюсти некоторые тонкости технологического процесса укладки основания.

Это с лихвой компенсируется многочисленными преимуществами столбчатого фундамента перед ленточным основанием, включая меньшую стоимость монтажа и скорость его установки.

Если почва на строительной площадке склонна к движению, а также чрезмерно насыщена водой, либо относится к местности, характеризующейся значительным перепадом высот, не рекомендуется использовать столбчатый фундамент в качестве основания.

Столбчатый фундамент является системой, в чью конструкцию входят столбы опорного типа, которые устанавливаются в ключевых точках строения. Их основное местоположение определяется углами, областями пересечения стен и элементами конструкции здания, являющимися несущими.

Расчеты, предшествующие началу строительных работ

Проведем расчет несущей способности столбчатого фундамента из монолитного железобетона (периметр стен и конструкция всего дома остаются прежними). Рассмотрим пример расчета для такого столбчатого фундамента:

— сечением столба в верхней части 40х40 см;

— сечение подошвы столба 80х80 см;

— расстояние между столбами 2 м (то есть 1 столб на 2 м длинный стены).

План столбчатого фундамента

Подсчитаем общую нагрузку, которая действует на грунт от подошвы столбчатого фундамента в сечении А-А (рис. 3). Она будет равна уже подсчитанной нагрузке, действующей на 1м длинны ленточных фундаментов (без учёта веса фундамента): 5415–1035=4380 кгс.

Далее необходимо умножить нагрузку на расстояние между столбами: 4380*2=8760 и добавить вес одного столба. Объём столбчатого фундамента приведённой конструкции примерно 0,25 м3. Таким образом, вес фундамента в соответствии с плотностью для железобетона по табл. 4 равен: 0,25*2500=625 кгс. Результат расчета нагрузки фундамента на грунт: 8760+625=9385 кгс на один столб. При этом опорная поверхность одного столба 80х80=6400 см2. Если учесть несущую способность грунта 1,5 гкс/см2, то предельные нагрузки фундамента на грунт будут: 6400*1,5= 9600 кгс, что больше расчетных нагрузок (9385 кгс).

Такой столбчатый фундамент будет надёжен для приведенного в примере дома. Необходимо отметить, что в общем случае для столбчатого фундамента:

— расход бетона будет примерно в 3-4 раза меньше;

— объем земляных работ приблизительно в два раза меньше.

Перед тем, как укладывать столбчатый фундамент, следует обратить внимание на такие важные факторы, как:

Подходит ли грунт на строительной площадке для возведения данного типа фундамента.

Какой будет нагрузка на столбчатый фундамент, возведенный под планируемым строением, т.е. следует учесть такие параметры дома, как его общий вес, планировка, количество тяжелых предметов мебели, а также количество человек, которые будут постоянно проживать в данном месте.

После того, как ответы на данные вопросы будут даны совершенно четко, можно приступать к выбору оптимальных опор и определяться с количеством используемых столбиков.

Перед началом работ, следует узнать значение глубины промерзания грунта в данной области и уровень вод, протекающих в почве.Эти данные являются определяющими при выборе глубины монтажа опор. Монтаж столбчатого основания – это сезонная работа, которую лучше всего закончить до наступления холодов.

Дело в том, что столбчатый фундамент легко деформируется на морозе, если его оставить без нагрузки, что приводит к его полной негодности к наступлению весеннего периода. Поэтому весной повторная заливка столбчатого фундамента вновь станет необходимой.

Подбор материала и подготовительные работы на строительной площадке

Способы заливки столбчатого фундамента сильно разнятся между собой, в зависимости от типа используемых материалов в качестве опорных столбов. Опорные столбы изготовляются из следующих материалов:

Наиболее долговечным из данных материалов является монолитный железобетон, который обладает поистине неограниченным сроком эксплуатации.

Первоначальные работы по подготовке строительной площадки к монтажу фундамента заключаются в срезании и выносе с территории всего растительного слоя, расположенного на том месте, где планируется возвести здание.

Столбчатый фундамент обладает заслуженной популярностью, если речь идет о выборе подходящего фундамента для строительства частного малоэтажного жилого дома.

Обнаружив глину под слоем растительности, непременно закройте ее подушкой из песка и гравия. Если же будет обнаружен торф или ил, то возводить столбчатый фундамент в таком месте строго не рекомендуется.

Когда площадка расчищена, с нее обязательно нужно убрать крупный мусор, камни, корни и так далее, чтобы площадка, выделенная под основание, была ровной. Помочь здесь может горизонтальная планировка: выпуклые места ровняются, а ямы – засыпаются гравием и песком.

Проверкой качества выполненной работы может служить доска, уложенная на землю, на которой сверху находится уровень.

Разметка площадки и рытье котлована

После этого можно заняться непосредственно разметкой планируемого столбчатого основания. Для этого по краям площадки устанавливают столбики из дерева с шагом в 2-3 метра, на которые монтируют рейки. На этих рейках оставляют отметки деталей котлована и фундамента, над которыми вскоре начнется работа.

Чтобы разметить детали, можно пользоваться шнурами или веревками, тянущимися между сторонами обноски. Особое внимание следует уделить точности отметок, указывающих на пересечения будущих стен, ведь в этих местах будут располагаться столбы основания.

Котлован обычно роется при помощи специальной техники. Главное при рытье – соблюдать строго вертикальное направление стенок котлована.

Влияние промерзание грунта на глубину котлована

Котлован следует рыть с учетом глубины промерзания грунта, ведь опорные столбы, которые будут в нем располагаться, должны входить в грунт ровно на половину от того значения, которое составляет глубина промерзания.

При глубине промерзания более одного метра стенки основания, следует укрепить откосом из горбыля, чтобы нивелировать процессы осыпания почвы.

Значение песчаной подушки

Перед заливкой фундамента, на дно котлована засыпается специальный слой из песка и гравия, который призван защитить почву от вспучивания в холода. При засыпке подушки ее тщательно утрамбовывают и увлажняют, после чего накрывают рубероидом, чтобы предотвратить впитывание воды из бетонной смеси в грунт при заливочных работах.

Это одно из самых важных правил, касающихся того, как правильно залить качественный столбчатый фундамент. После того, как котлован закончен, приступают к монтажу опалубки.

Монтаж опалубки и армирование фундамента

Опалубку лучшего всего выбирать из древесины, потому что металлоконструкции впоследствии плотно схватятся с заливочной смесью. Монтаж опалубки происходит в соответствии с вертикальной осью, что нужно контролировать отвесом. Опалубка должна обладать запасом прочности для того, чтобы выдержать массу бетонной смеси.

После этого происходит монтаж арматуры, которая крепится вертикально по несколько прутьев, последние стягиваются проволокой или хомутом.

При использовании хомута, следует помнить о том, что им конструкция из арматуры схватывается снизу, сверху и по центру. Арматура должна превышать высоту основания на 20 см., это необходимо для последующей приварки ростверка.

Заливка бетона и монтаж ростверка

Готовую бетонную смесь принято заливать порционно, формируя при этом слои, толщиной приблизительно по 30 см. Чтобы прочность опоры осталась оптимальной, следует обеспечить надлежащую консистенцию заливочной смеси, которая не должна быть слишком густой или наоборот — текучей. Уплотнение слоев производится при помощи вибратора.

Скрепление столбов

Образованную россыпь опорных столбов скрепляют между собой монолитом. Перед его изготовлением, нужно проверить все опоры на предмет соответствия оптимальной высоте. Низкие опоры следует дополнительно нарастить при помощи цементного раствора.

Прутья арматуры, торчащие из опорных столбов, монтируются в систему при помощи прутов арматуры или проволоки с толстым сечением. Выходную арматуру сваривают с перемычками, поверх которых монтируется опалубка с каркасом из арматуры. Данная конструкция заливается бетоном, затем снимается после полного затвердевания бетонной смеси.

Расчет фундамента для дома: нагрузка на фундамент и грунт

На этапе проектирования будущего дома в числе прочих расчетов необходимо выполнить расчет фундамента. Цель этого расчета – определить, какая нагрузка будет действовать на фундамент и грунт, и какой должна быть опорная площадь фундамента. Суммарная нагрузка на фундамент это постоянная нагрузка от самого дома и временная от ветра и снежного покрова. Для того, чтобы определить общую нагрузку на фундамент, необходимо посчитать вес будущего дома со всеми эксплуатационным нагрузками (проживающими там людьми, мебелью, инженерным оборудованием и т.п.). Так же при расчете фундамента определяется и его вес и площадь опоры, чтобы определить, выдержит ли грунт нагрузку от дома и фундамента. Профессиональные проектировщики делают точные расчеты на основании геологических изысканий грунта и точно рассчитывают вес будущего дома и количество строительных материалов. При самостоятельном строительстве в такой точности нет нужды, но приблизительно рассчитать фундамент своего дома надо, равно как и иметь какой-то план всего строительства.

В приведенном в этой статье примере расчета фундамента подразумевается, что нагрузка от дома распределяется равномерно по всей площади.

Расчет веса дома

Итак, необходимо рассчитать приблизительный вес дома. Для этого существуют справочные данные с усредненными значениями удельного веса конструкций дома: стен, перекрытий, кровли.

Удельный вес 1 м 2 стены

Каркасные стены толщиной 150 мм с утеплителем30-50 кг/м 2
Стены из бревен и бруса70-100 кг/м 2
Кирпичные стены толщиной 150 мм200-270 кг/м 2
Железобетон толщиной 150 мм300-350 кг/м 2

Удельный вес 1 м 2 перекрытий

Чердачное по деревянным балкам с утеплителем,
плотностью до 200 кг/м 3
70-100 кг/м 2
Чердачное по деревянным балкам с утеплителем,
плотностью до 500 кг/м 3
150-200 кг/м 2
Цокольное по деревянным балкам с утеплителем,
плотностью до 200 кг/м 3
100-150 кг/м 2
Цокольное по деревянным балкам с утеплителем,
плотностью до 500 кг/м 3
200-300 кг/м 2
Железобетонное500 кг/м 2

Удельный вес 1 м 2 кровли

Кровля из листовой стали20-30 кг/м 2
Рубероидное покрытие30-50 кг/м 2
Кровля из шифера40-50 кг/м 2
Кровля из гончарное черепицы60-80 кг/м 2

На основании этих таблиц можно примерно рассчитать вес дома. Пусть планируется построить двухэтажный дом размером 6 на 6 с одной внутренней стеной с высотой этажа 2,5 м. Тогда длина внешних стен одного этажа составит (6+6) x 2 = 24 м, плюс одна внутренняя стена длиной еще 6 м, итого 30 м. Общая длина всех стен на двух этажах 30 м х 2 = 60 м. Тогда площадь всех стен составит: S стен = 60 м х 2,5 м = 150 м 2 . Площадь цокольного перекрытия составит 6 м x 6 м = 36 м 2 . Такая же площадь будет и у чердачного перекрытия. Кровля всегда несколько выступает за стены дома (допустим на 50 см с каждой стороны), поэтому площадь кровли посчитаем как 7 м х 7 м = 49 м 2 .

Теперь, используя средние данные из приведенных выше таблиц, можно провести приблизительный расчет общей нагрузки на фундамент. При этом будем брать наибольшие удельные веса, чтобы считать с запасом. Для сравнения расчет сделан для трех вариантов домов:
— каркасный дом с деревянными перекрытиями с утеплителем плотностью до 200 кг/м 3 и кровлей из листового материала типа Ондулин;
— кирпичный дом с деревянными перекрытиями с утеплителем плотностью до 200 кг/м 3 и кровлей из листовой стали;
— железобетонный дом с железобетонными перекрытиями и кровлей из гончарной черепицы.

Помимо постоянной нагрузки, которая создается весом дома, есть временные нагрузки от ветра и снежного покрова. Средний вес снежного покрова приведен в таблице:

Для юга России50-100 кг/м 2
Для средней полосы России150-200 кг/м 2
Для севера Россииболее 200 кг/м 2

При площади кровли 49 м 2 для средней полосы России нагрузка от снежного покрова составит 49 м 2 х 100 кг/м 2 = 4900 кг. Прибавляем ее к общей нагрузке на фундамент.

ДомВес стен, кгЦокольное перекрытие, кгЧердачное перекрытие, кгВес кровли, кгСнежный покров, кгВсего, кг
Каркасный7500540036001470490022870
Кирпичный40500540036001470490055870
Железобетонный5250018000180003920490097320

Расчет площади фундамента и его веса

Чтобы определить нагрузку на грунт и понять, выдержит ли этот грунт такое здание, нужно к весу дома прибавить вес фундамента.

Под железобетонный и кирпичный дом вероятнее всего придется закладывать ленточный глубоко заглубленный фундамент, т.е. на глубину ниже глубины промерзания. Примем ее 1,5 м, и добавим еще 40 см над уровнем земли, итоговая высота ленты фундамента составит 1,9 м. Общая длина такой ленты составит 30 м (24 м периметр и 6 м под внутренней стеной), ее общий объем при ширине 40 см – 30 м х 0,4 м х 1,9 м = 22,8 м 3 , при плотности железобетона 2400 кг/м 3 , вес фундамента составит 54720 кг. Опорная площадь такого фундамента составит 3000 см х 40 см = 120 000 см 2 .

Под каркасный дом должно хватать столбчатого фундамента. Пусть столбики будут диаметром 20 см и высотой 1,9 м и заложены на глубину 1,5 м. Опорная площадь такого столбика составит 10 см х 10 см х 3,14 = 314 см 2 . Объем такого столбика будет 0,06 м 3 , а вес – 143 кг. Общая длина всех стен составляет 30 м, если ставить столбики через 1 м, то их понадобится 30 штук. В этом случае общий вес столбчатого фундамента составит 143 кг х 30 = 4290 кг, а общая опорная площадь – 314 см 2 х 30 = 9420 см 2

Итак, для каждого дома рассчитан вес, выбран фундамент, посчитана опорная площадь и вес фундамента. Чтобы рассчитать общую нагрузку на грунт, нужно общий вес здания разделить на опорную площадь.

ДомВес дома, кгВес фундамента, кгОбщий вес, кгПлощадь, см 2Нагрузка на грунт, кг/см 2
Каркасный2287042902716094202,88
Кирпичный55870547201105901200000,92
Железобетонный97320547201520401200001,26

Любой сухой грунт (хоть глинистый, хоть песчаный) имеет несущую способность от 2 кг/см 2 и более. Именно на эту цифру и стоит равняться при расчете фундамента. В нашем случае нагрузка от кирпичного и железобетонного домов на массивном ленточном фундаменте остается в пределах 2 кг/см 2 с большим запасом. Нагрузка от каркасного дома на столбчатом фундаменте превышает 2 кг/см 2 . Если нагрузка на грунт получается слишком большой и есть сомнения по поводу того, что грунт ее выдержит, нужно изменить параметры фундамента для увеличения опорной площади. В случае с ленточным – это увеличение ширины ленты, в случае со столбчатым – увеличение диаметра столба и увеличение количества столбов. Разумеется, при этом изменится и вес фундамента, поэтому расчет его веса и нагрузки на грунт нужно будет повторить.

После выбора типа фундамента и его характеристик можно провести расчет количества бетона на него и рассчитать расход арматуры для армирования этого фундамента.

Читайте так же:

Глубина промерзания грунта
Промерзание грунта приводит к его пучению и негативному воздействию на фундамент здания. Глубина промерзания зависит от типа грунта и климатических условий.

Уровень грунтовых вод
Грунтовые воды – это первый от поверхности земли подземный водоносный слой, который залегает выше первого водоупорного слоя. Они оказывают негативное воздействие на свойства грунта и фундаменты домов, уровень грунтовых вод необходимо знать и учитывать при заложении фундамента.

Пучинистый грунт
Пучинистый грунт – это такой грунт, который подвержен морозному пучению, при промерзании он значительно увеличивается в объеме. Силы пучения достаточно велики и способны поднимать целые здания, поэтому закладывать фундамент на пучинистом грунте без принятия мер против пучения нельзя.

Силы морозного пучения грунтов
Морозное пучение – это увеличение объема грунта при отрицательных температурах, то есть зимой. Происходит это из-за того, что влага, содержащаяся в грунте, при замерзании увеличивается в объеме. Силы морозного пучения действуют не только на основание фундамента, но и на его боковые стенки и способны выдавить фундамент дома из грунта.

Несущая способность грунтов Несущая способность грунтов – это его основанная характеристика, которую необходимо знать при строительстве дома, она показывает какую нагрузку может выдержать единица площади грунта. Несущая способность определяет, какой должна быть опорная площадь фундамента дома: чем хуже способность грунта выдерживать нагрузку, тем больше должна быть площадь фундамента.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×