34 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Значение емкости переменного тока

Конденсатор в цепи переменного тока

Соберем цепь с конденсатором, в которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю.

Рис. 1. Изменение тока и напряжения в цепи с емкостью

Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда (рис. 2),один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится.

Рис. 2. Изменение напора воды в трубе, соединяющей сообщающиеся сосуды, сходно с изменением тока в цепи во время заряда конденсатора

Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.

Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим заряды и разряды конденсатора сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит переменный ток.

Убедиться в этом можно на следующем простом опыте. Подключите к сети переменного тока через лампочку электрического освещения мощностью 25 Вт конденсатор емкостью 4—6 мкф. Лампочка загорится и не погаснет до тех пор, пока не будет разорвана цепь. Это говорит о том, что по цепи с емкостью проходил переменный ток. Однако проходил он, конечно, не сквозь диэлектрик конденсатора, а в каждый момент времени представлял собой или ток заряда или ток разряда конденсатора.

Диэлектрик же, как нам известно, поляризуется под действием электрического поля, возникающего в нем при заряде конденсатора, и поляризация его исчезает, когда конденсатор разряжается.

При этом диэлектрик с возникающим в нем током смещения служит для переменного тока своего рода продолжением цепи, а для постоянного разрывает цепь. Но ток смещения образуется только в пределах диэлектрика конденсатора, и поэтому сквозного переноса зарядов по цепи не происходит.

Сопротивление, оказываемое конденсатором переменному току, зависит от величины емкости конденсатора и от частоты тока.

Чем больше емкость конденсатора, тем больший заряд переносится по цепи за время заряда и разряда конденсатора, а следовательно, и тем больший будет ток в цепи. Увеличение же тока в цепи свидетельствует о том, что уменьшилось ее сопротивление.

Следовательно, с увеличением емкости уменьшается сопротивление цепи переменному току.

Увеличение частоты тока увеличивает величину переносимого по цепи заряда, так как заряд (а равно и разряд) конденсатора должен произойти быстрее, чем при низкой частоте. В то же время увеличение величины переносимого в единицу времени заряда равносильно увеличению тока в цепи, а следовательно, уменьшению ее сопротивления.

Если же мы каким-либо способом будем постепенно уменьшать частоту переменного тока и сведем ток к постоянному, то сопротивление конденсатора, включенного в цепь, будет постепенно возрастать и станет бесконечно большим (разрыв цепи) к моменту появления в цепи постоянного тока.

Следовательно, с увеличением частоты уменьшается сопротивление конденсатора переменному току.

Подобно тому как сопротивление катушки переменному току называют индуктивным, сопротивление конденсатора принято называть емкостным.

Таким образом, емкостное сопротивление тем больше, чем меньше емкость цепи и частота питающего ее тока.

Емкостное сопротивление обозначается через Хс и измеряется в омах.

Зависимость емкостного сопротивления от частоты тока и емкости цепи определяется формулой Хс = 1/ ωС, где ω — круговая частота, равная произведению 2 π f , С—емкость цепи в фарадах.

Емкостное сопротивление, как и индуктивное, является реактивным по своему характеру, так как конденсатор не потребляет энергии источника тока.

Формула закона Ома для цепи с емкостью имеет вид I = U/Xc , где I и U — действующие значения тока и напряжения; Хс — емкостное сопротивление цепи.

Свойство конденсаторов оказывать большое сопротивление токам низкой частоты и легко пропускать токи высокой частоты широко используется в схемах аппаратуры связи.

С помощью конденсаторов, например, достигается необходимое для работы схем разделение постоянных токов и токов низкой частоты от токов высокой частоты.

Если нужно преградить путь току низкой частоты в высокочастотную часть схемы, последовательно включается конденсатор небольшой емкости. Он оказывает большое сопротивление низкочастотному току и в то же время легко пропускает ток высокой частоты.

Если же надо не допустить ток высокой частоты, например, в цепь питания радиостанции, то используется конденсатор большой емкости, включаемый параллельно источнику тока. Ток высокой частоты в этом случае проходит через конденсатор, минуя цепь питания радиостанции.

Активное сопротивление и конденсатор в цепи переменного тока

На практике часто встречаются случаи, когда в цепи последовательно с емкостью включено активное сопротивление. Общее сопротивление цепи в этом случае определяется по формуле

Следовательно, полное сопротивление цепи, состоящей из активного и емкостного сопротивлений, переменному току равно корню квадратному из суммы квадратов активного и емкостного сопротивлений этой цепи.

Закон Ома остается справедливым и для этой цепи I = U/Z .

На рис. 3 приведены кривые, характеризующие фазовые соотношения между током и напряжением в цепи, содержащей емкостное и активное сопротивления.

Рис. 3. Ток, напряжение и мощность в цепи с конденсатором и активным сопротивлением

Как видно из рисунка, ток в этом случае опережает напряжение уже не на четверть периода, а меньше, так как активное сопротивление нарушило чисто емкостный (реактивный) характер цепи, о чем свидетельствует уменьшенный сдвиг фаз. Теперь уже напряжение на зажимах цепи определится как сумма двух слагающих: реактивной слагающей напряжения u с, идущей на преодоление емкостного сопротивления цепи, и активной слагающей напряжения преодолевающей активное ее сопротивление.

Чем больше будет активное сопротивление цепи, тем меньший сдвиг фаз получится между током и напряжением.

Кривая изменения мощности в цепи (см. рис. 3) дважды за период приобрела отрицательный знак, что является, как нам уже известно, следствием реактивного характера цепи. Чем менее реактивная цепь, тем меньше сдвиг фаз между током и напряжением и тем большую мощность источника тока эта цепь потребляет.

Цепь с емкостью

а) Напряжение и ток
Если на зажимах конденсатора (рис. 6-17) напряжение

то на обкладках его заряд

изменяется пропорционально напряжению (рис. 6-18).

Ток в цепи конденсатора, равный скорости изменения заряда по времени,

пропорционален скорости изменения напряжения на его зажимах.
Синусоидальное напряжение в моменты прохождения через нулевые значения (рис. 6-18) имеет наибольшую скорость изменения, следовательно, в эти моменты времени сила тока в цепи конденсатора будет иметь наибольшее значение. В моменты прохождения напряжения через амплитудные значения скорость изменения его, а следовательно, я сила тока в цепи будут равны нулю.

Таким образом, ток в цепи конденсатора

изменяется синусоидально, опережая по фазе напряжение на угол 90° (рис. 6-19).

б) Емкостное сопротивление
Из выражения (6-24) следует, что амплитуда тока

Разделив написанное выражение на √2, получим:

Полученная формула выражает закон Ома для действующих значений цепи с конденсатором емкостью C .
Величина

называется реактивным сопротивлением емкости или емкостным сопротивлением.
Емкостное сопротивление обратно пропорционально емкости и частоте переменного тока.
При изменении частоты от f = 0 (постоянный ток) до f = ∞ оно изменяется от
x
с = ∞ до x с = 0

в) Мощность
Мгновенное значение мощности

На рис. 6-18 показан график мгновенной мощности. Мгновенная мощность в цепи с емкостью изменяется с двойной частотой, достигая то положительного максимума то такого же по величине отрицательного максимума.
При нарастании напряжения (первая и третья четверти периода рис. 6-18) происходит накопление энергии электрического поля от нуля до максимального значения

которая получается от генератора. Таким образом, цепь работает в режиме потребителя, что соответствует положительному значению мощности.
При уменьшении напряжения (вторая и четвертая четверти периода, рис. 6-18) происходит уменьшение накопленной энергии электрического поля от максимального значения до нуля и она возвращается цепью генератору. Таким образом, в эти части периода цепь работает в режиме генератора, что соответствует отрицательному значению мощности цепи с емкостью. Энергия, получаемая цепью за полупериод, равна нулю, следовательно, равна нулю и средняя мощность цепи.

Максимальное значение мощности в цепи с емкостью называется реактивной мощностью:

Она характеризует скорость обмена энергией между генератором и цепью с емкостью.

§53. Емкость в цепи переменного тока

Ток и напряжение. В цепи постоянного тока емкость (идеальный конденсатор) имеет сопротивление бесконечно большое, так как после окончания процесса заряда такой конденсатор не пропускает электрический ток. Однако при подключении емкости к источнику переменного тока (рис. 191,а) происходит непрерывный процесс его заряда и разряда, при этом через емкость проходит переменный ток.

Ток i при включении в цепь переменного тока емкости определяется количеством электричества q, проходящим по этой цепи в единицу времени. Следовательно,

где ?q — изменение количества электричества (заряда q) за время ?t.

Количество электричества q, накопленное в конденсаторе при изменении напряжения и, также непрерывно изменяется. Поэтому, учитывая формулу (69), будем иметь:

где ?u — изменение напряжения и за время ?t.

Из рис. 191,б видно, что скорость изменения напряжения ?u/?t будет наибольшей в моменты времени, когда угол ?t равен 0; 180 и 360°. Следовательно, в эти моменты времени ток i имеет максимальное значение. В моменты же времени, когда угол ?t равен 90° и 270°, скорость изменения напряжения ?u/?t = 0 и поэтому i = 0.

В течение первой четверти периода происходит заряд емкости и в цепи течет ток заряда, который считаем положительным. При этом по мере заряда емкости и увеличения разности потенциалов на электродах ток i уменьшается. При ?t = 90° емкость полностью заряжается, разность потенциалов на электродах становится равной напряжению и источника и ток i = 0.

Во второй четверти периода емкость начнет разряжаться и ток i изменяет свое направление (становится отрицательным). При

Рис. 191. Схема включения в цепь переменного тока емкости (а), кривые тока i напряжения u (б) и векторная диаграмма (в)

?t =180°, когда u = 0, ток i разряда достигает максимального значения. В этот момент изменяется полярность напряжения и источника и начинается процесс перезаряда емкости при противоположном (отрицательном) направлении тока i. При со/ = 270° заряд прекращается, ток i становится равным нулю и начинается разряд при первоначальном (положительном) направлении тока.

Таким образом, емкость в течение одного периода изменения напряжения и дважды заряжается и дважды разряжается. Следовательно, в цепи (см. рис. 191, а) непрерывно протекает переменный ток i. Из рис. 191,б видно, что при включении в цепь переменного тока емкости ток i опережает по фазе напряжение и на угол 90° или же что напряжение и отстает по фазе от тока i на угол 90° (рис. 191,в).

Емкостное сопротивление. Сопротивление, которое оказывает емкость переменному току, называют емкостным. Оно обозначается Xс и измеряется в омах. Физически емкостное сопротивление обусловлено действием э. д. с. ес, возникающей в конденсаторе С. Эта э. д. с. направлена против приложенного напряжения u, так как заряженный конденсатор можно рассматривать как источник с некоторой э. д. с. ес, действующей между его пластинами. Поэтому э. д. с. ес препятствует изменению тока под действием напряжения u, т. е. оказывает прохождению переменного тока определенное сопротивление.

Из формулы (70) следует, что чем больше емкость С и скорость изменения напряжения ?u/?t, т. е. частота его изменения f (значение ?), тем больше ток i в цепи с емкостью и тем меньше емкостное сопротивление:

Закон Ома для цепи с емкостью:

I = U / Xс = U / ( 1 /(?C) )

Электрическая мощность. Рассмотрим, как изменяется электрическая мощность в цепи переменного тока с емкостью. Ее можно получить графическим путем, перемножая ординаты кривых тока и напряжения при различных углах ?t. Кривая мгновенной мощности (см. рис. 179,б) представляет собой синусоиду, которая изменяется с двойной частотой 2? по сравнению с частотой изменения тока i и напряжения u. Следовательно, в этой цепи тоже имеет место непрерывный колебательный процесс обмена энергией между источником и емкостью. В первую и третью четверти периода мощность положительна, т. е. конденсатор получает энергию W от источника и накапливает ее в своем электрическом поле. Во вторую и четвертую четверть периода конденсатор отдает накопленную энергию источнику (мощность отрицательна); при этом протекание тока по цепи поддерживается э. д. с. ес. В целом за период в емкостное сопротивление не поступает электрическая энергия (среднее значение мощности за период равно нулю). Поэтому емкостное сопротивление, так же как и индуктивное, относят к группе реактивных сопротивлений.

Для характеристики процесса обмена энергией между источником и емкостью введено понятие реактивной мощности емкости:

где Uс — напряжение, приложенное к конденсатору (действующее значение) .

Эту мощность можно выразить также в виде

Следует отметить, что в реальных конденсаторах имеют место потери мощности, вследствие чего они потребляют от источника некоторую электрическую энергию. Потери мощности вызваны тем, что в диэлектрике, разделяющем пластины конденсатора, под действием переменного электрического поля возникают токи смещения, нагревающие диэлектрик. Чем больше напряжение и частота его изменения, тем больше потери мощности в конденсаторах от токов смещения. Однако эти потери имеют значение только в конденсаторах, применяемых в высокочастотных установках. При стандартной частоте 50 Гц потери в конденсаторах настолько малы, что их обычно не учитывают.

Емкостное и индуктивное сопротивление в цепи переменного тока

Если мы включим конденсатор в цепь постоянного тока, то обнаружим, что он оказывает бесконечно большое сопротивление, поскольку постоянный ток просто не может пройти через диэлектрик между обкладками, так как диэлектрик по определению не проводит постоянный электрический ток.

Конденсатор разрывает цепь постоянного тока. Но если тот же конденсатор включить теперь в цепь переменного тока, то окажется, что ее конденсатор будто бы и не разрывает полностью, он просто попеременно заряжается и разряжается, то есть электрический заряд движется, и ток во внешней цепи поддерживается.

Опираясь на теорию Максвелла, в этом случае можно сказать, что переменный ток проводимости внутри конденсатора все же замыкается, только в данном случае — током смещения. Значит конденсатор в цепи переменного тока выступает неким сопротивлением конечной величины. Такое сопротивление называется емкостным.

Практика давно показала, что величина переменного тока, текущего через провод, зависит от формы этого провода и от магнитных свойств среды вокруг него. При прямом проводе ток будет наибольшим, а если этот же провод свернуть в катушку с большим количеством витков, то величина тока окажется меньше.

А если в ту же катушку еще и ввести ферромагнитный сердечник, то ток еще сильнее уменьшится. Следовательно проводник оказывает переменному току не только омическое (активное) сопротивление, но еще и некое дополнительное сопротивление, зависящее от индуктивности проводника. Данное сопротивление называется индуктивным.

Его физический смысл состоит в том, что изменяющийся ток в проводнике, обладающем некой индуктивностью, инициирует в этом проводнике ЭДС самоиндукции, стремящуюся препятствовать изменениям тока, то есть стремящуюся уменьшить ток. Это равносильно увеличению сопротивления проводника.

Емкостное сопротивление в цепи переменного тока

Для начала поговорим более подробно о емкостном сопротивлении. Допустим, что конденсатор емкостью С подключен к источнику синусоидального переменного тока, тогда ЭДС этого источника будет описываться следующей формулой:

Падением напряжения на соединительных проводах пренебрежем, так как оно обычно очень мало, а при необходимости его можно будет рассмотреть отдельно. Примем сейчас, что напряжение на обкладках конденсатора равно напряжению источника переменного тока. Тогда:

В любой момент времени заряд на конденсаторе зависит от его емкости и от напряжения между его обкладками. Тогда для данного известного источника, о котором говорилось выше, получим выражение для нахождения заряда на обкладках конденсатора через напряжение источника:

Пусть за бесконечно малое время dt заряд на конденсаторе изменяется на величину dq, тогда по проводам от источника к конденсатору потечет ток I, равный:

Амплитудное значение тока окажется равно:

Тогда окончательное выражение для тока будет иметь вид:

Перепишем формулу для амплитуды тока в следующем виде:

Данное соотношение есть закон Ома, где величина обратная произведению угловой частоты на емкость играет роль сопротивления, и по сути являет собой выражение для нахождения емкостного сопротивления конденсатора в цепи синусоидального переменного тока:

Значит емкостное сопротивление обратно пропорционально угловой частоте тока и емкости конденсатора. Легко понять и физический смысл данной зависимости.

Чем больше емкость конденсатора в цепи переменного тока и чем чаще изменяется направление тока в этой цепи, тем в конце концов больший суммарный заряд проходит за единицу времени через поперечное сечение проводов, соединяющих конденсатор с источником переменного тока. Значит ток пропорционален произведению емкости и угловой частоты.

Для примера выполним расчет емкостного сопротивления конденсатора электроемкостью 10 мкф для цепи синусоидального переменного тока с частотой 50 Гц:

Если бы частота была 5000 Гц, то тот же самый конденсатор представлял бы собой сопротивление около 3 Ом.

Из приведенных выше формул ясно, что ток и напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах. Фаза тока опережает фазу напряжения на пи/2 (90 градусов). А значит максимум тока во времени существует всегда на четверть периода раньше, чем максимум напряжения. Таким образом на емкостном сопротивлении ток опережает напряжение на четверть периода по времени или на 90 градусов по фазе.

Давайте поясним физический смысл данного явления. В самый первый момент времени конденсатор полностью разряжен, поэтому самое малое приложенное к нему напряжение уже перемещает заряды на пластинах конденсатора, создавая ток.

По мере того как конденсатор заряжается, напряжение на его обкладках увеличивается, оно препятствует дальнейшему притоку заряда, поэтому ток в цепи уменьшается невзирая на дальнейший рост прикладываемого к обкладкам напряжения.

Значит, если в начальный момент времени ток был максимальным, то когда напряжение достигнет своего максимума через четверть периода, ток прекратится вовсе.

В начале периода ток максимален а напряжение минимально и начинает нарастать, но через четверть периода напряжение достигает максимума, но ток к этому моменту уже упал до нуля. Вот и получается опережение током напряжения на четверть периода.

Индуктивное сопротивление в цепи переменного тока

Теперь вернемся к индуктивному сопротивлению. Допустим, что через катушку, обладающую индуктивностью, течет переменный синусоидальный ток. Его можно выразить так:

Ток обусловлен приложенным к катушке переменным напряжением. Значит на катушке возникнет ЭДС самоиндукции, которая выражается следующим образом:

Снова пренебрежем падением напряжения на проводах, соединяющих источник ЭДС с катушкой. Их омическое сопротивление очень мало.

Пусть приложенное к катушке переменное напряжение в каждый момент времени полностью уравновешивается возникающей ЭДС самоиндукции, равной ему по величине, но противоположной по направлению:

Тогда имеем право записать:

Поскольку амплитуда приложенного к катушке напряжения равна:

Выразим максимальный ток следующим образом:

Это выражение по сути является законом Ома. Величина равная произведению индуктивности на угловую частоту играет здесь роль сопротивления, и представляет собой ни что иное, как индуктивное сопротивление катушки индуктивности:

Так, индуктивное сопротивление пропорционально индуктивности катушки и угловой частоте переменного тока, через данную катушку пропускаемого.

Это объясняется тем, что индуктивное сопротивление обусловлено влиянием ЭДС самоиндукции на напряжение источника, — ЭДС самоиндукции стремится уменьшить ток, а значит сносит в цепь сопротивление. Величина ЭДС самоиндукции, как известно, пропорциональна индуктивности катушки и скорости изменения тока через нее.

Для примера рассчитаем индуктивное сопротивление катушки с индуктивностью 1 Гн, которая включена в цепь с частотой тока 50 Гц:

Если бы частота бала 5000 Гц, то сопротивление этой же катушки оказалось бы равно приблизительно 31400 Ом. Напомним, что омическое сопротивление провода катушки составляет обычно единицы Ом.

Из приведенных выше формул очевидно, что изменения тока через катушку и напряжения на ней, происходят в разных фазах, причем фаза тока всегда меньше чем фаза напряжения на пи/2. Следовательно максимум тока наступает на четверть периода позже наступления максимума напряжения.

На индуктивном сопротивлении ток отстает от напряжения на 90 градусов из-за тормозящего действия ЭДС самоиндукции, которая препятствует изменению тока (и нарастанию, и убыванию), вот почему максимум тока наблюдается в цепи с катушкой позднее максимума напряжения.

Совместное действие катушки и конденсатора

Если включить в цепь переменного тока последовательно катушку с конденсатором, то напряжение на катушке будет опережать напряжение на конденсаторе по времени на половину периода, то есть на 180 градусов по фазе.

Емкостное и индуктивное сопротивление называются реактивными сопротивлениями. На реактивном сопротивлении энергия не расходуется как на активном. Энергия накапливаемая в конденсаторе периодически возвращается обратно к источнику, когда электрическое поле в конденсаторе исчезает.

Так же и с катушкой: пока магнитное поле катушки создается током, энергия в ней на протяжении четверти периода накапливается, а в следующую четверть периода возвращается к источнику. В данной статье речь шла о синусоидальном переменном токе, для которого данные положения выполняются строго.

В цепях синусоидального переменного тока катушки индуктивности с сердечниками, называемые дросселями, традиционно используются для ограничения тока. Их преимущество перед реостатами в том, что энергия не рассеивается в огромном количестве в форме тепла.

Цепь переменного тока с емкостью

Дата публикации: 31 марта 2015 .
Категория: Электротехника.

Если в цепь постоянного тока включить конденсатор (идеальный – без потерь), то в течение короткого времени после включения по цепи потечет зарядный ток. После того как конденсатор зарядится до напряжения, соответствующего напряжению источника, кратковременный ток в цепи прекратится. Следовательно, для постоянного тока конденсатор представляет собой разрыв цепи или бесконечно большое сопротивление.

Если же конденсатор включить в цепь переменного тока, то он будет заряжаться попеременно то в одном, то в другом направлении.

При этом в цепи будет проходить переменный ток. Рассмотрим это явление подробнее.

В момент включения напряжение на конденсаторе равно нулю. Если включить конденсатор к переменному напряжению сети, то в течение первой четверти периода, когда напряжение сети будет возрастать (рисунок 1), конденсатор будет заряжаться.

Рисунок 1. Графики и векторная диаграмма для цепи переменного тока, содержащей емкость

По мере накопления зарядов на обкладках конденсатора напряжение конденсатора увеличивается. Когда напряжение сети к концу первой четверти периода достигнет максимума, заряд конденсатора прекращается и ток в цепи становится равным нулю.

Ток в цепи конденсатора можно определить по формуле:

где q – количество электричества, протекающее по цепи.

Из электростатики известно:

где C – емкость конденсатора; u – напряжение сети; uC – напряжение на обкладках конденсатора.

Окончательно для тока имеем:

Из последнего выражения видно, что, когда максимально (положения а, в, д), i также максимально. Когда (положения б, г на рисунке 1), то i также равно нулю.

Во вторую четверть периода напряжение сети будет уменьшаться, и конденсатор начнет разряжаться. Ток в цепи меняет свое направление на обратное. В следующую половину периода напряжение сети меняет свое направление и наступает перезаряд конденсатора и затем снова его разряд. Из рисунка 1 видно, что ток в цепи с емкостью в своих изменениях опережает по фазе на 90° напряжение на обкладках конденсатора.

Сравнивая векторные диаграммы цепей с индуктивностью и емкостью, мы видим, что индуктивность и емкость на фазу тока влияют прямо противоположно.

Поскольку мы отметили выше, что скорость изменения тока пропорциональна угловой частоте ω, из формулы

получаем аналогично, что скорость изменения напряжения также пропорциональна угловой частоте ω и для действующего значения тока имеем

Обозначая , где xC называется емкостным сопротивлением, или реактивным сопротивлением емкости. Итак мы получили формулу емкостного сопротивления при включении емкости в цепи переменного тока. Отсюда, на основании выражения закона Ома, мы можем получить ток для цепи переменного тока, содержащей емкость:

Напряжение на обкладках конденсатора

Та часть напряжения сети, которая имеется на конденсаторе, называется емкостным падением напряжения, или реактивной слагающей напряжения, и обозначается UC.

Емкостное сопротивление xC, так же как индуктивное сопротивление xL, зависит от частоты переменного тока.

Но если с увеличением частоты индуктивное сопротивление увеличивается, то емкостное сопротивление, наоборот, будет уменьшаться.

Пример 1. Определить емкостное реактивное сопротивление конденсатора емкостью 5 мкФ при разных частотах сетевого напряжения. Расчет емкостного сопротивления произведем при частоте 50 и 40 Гц:

при частоте 50 Гц:

при частоте 400 Гц:

Применим формулу средней или активной мощности для рассматриваемой цепи:

Так как в цепи с емкостью ток опережает напряжение на 90°, то

Поэтому активная мощность также равна нулю, то есть в такой цепи, как и в цепи с индуктивностью, расхода мощности нет.

На рисунке 2 показана кривая мгновенной мощности в цепи с емкостью. Из чертежа видно, что в первую четверть периода цепь с емкостью забирает из сети энергию, которая запасается в электрическом поле конденсатора.

Рисунок 2. Кривая мгновенной мощности в цепи с емкостью

Энергию, запасаемую конденсатором к моменту прохождения напряжения на нем через максимум, можно определить по формуле:

В следующую четверть периода конденсатор разряжается на сеть, отдавая ей ранее запасенную в нем энергию.

За вторую половину периода явление колебаний энергии повторяется. Таким образом, в цепи с емкостью происходит лишь обмен энергией между сетью и конденсатором без потерь.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

Емкость в цепи переменного тока

Рассмотрим классическую схему, в которой последовательно подключены: источник переменной ЭДС, активное сопротивление и конденсатор.

Если бы в этой схеме был постоянный источник, конденсатор выполнил бы роль изолятора в силу своих конструктивных особенностей. В этом случае он бы просто зарядился за определенное время, и его потенциал на обкладках совпал бы с источником ЭДС. После этого ток в цепи стал бы равен нулю.

Если же применить аналогичную схему с переменным источником, то ток продолжает «циркулировать» по проводникам – конденсатор подвергается периодической перезарядке. При этом возникающие на его обкладках электрические заряды постоянно меняют как абсолютную величину, так и знаки.

Следует четко понимать, что никакие заряды через диэлектрик, расположенный между обкладками конденсатора, протекать не может. В то же время весьма распространен подход при расчете электрических схем, когда (условно) подразумевается, что через конденсатор протекает ток, соответствующий данному участку цепи.

В переменных замкнутых цепях (для мгновенных значений) по прежнему действует классический закон Ома: ЭДС источника соответствует сумме падений напряжения на каждом участке цепи.

Так как источник имеет переменную ЭДС с определенным периодом и частотой, сила тока в цепи, а также напряжение на конденсаторе изменяются в соответствие с гармоническими законами: конденсатор в первой и третьей четверти периода разряжается, и, соответственно, заряжается в течение других фаз.

В то же время конденсатор оказывает определенное «сопротивление» прохождению по цепи переменного тока. Причем, чем больше его емкость, тем быстрее он перезаряжается, и соответственно, сила тока в цепи будет увеличиваться.

При этом энергетические потери на самом конденсаторе, в отличие от активного сопротивления, практически равны нулю.

На силу тока, «условно проходящего» через конденсатор, влияет и частота переменного источника ЭДС: понятно, что чем быстрее перезаряжается конденсатор, тем меньшее сопротивление он создает за единицу времени.

Такое емкостное сопротивление определяется следующей формулой:

где С – емкость цепи, в Фарадах;

Способность конденсаторов создавать селективное реактивное сопротивление , в зависимости от частоты, широко используется в различных фильтрах.

Например, чтобы преградить доступ низкочастотного сигнала в высокочастотную часть схемы, применяется последовательное подключение конденсаторов небольшой емкости.

А для защиты блоков питания используются мощные электролилитеские конденсаторы, подключаемые по параллельной схеме.

Значение емкости переменного тока

§ 66. Цепь переменного тока, содержащая емкость

Если в цепь постоянного тока включить конденсатор (идеальный — без потерь), то в течение очень короткого времени после включения по цепи потечет зарядный ток. После того как конденсатор зарядится до напряжения, равного напряжению источника, кратковременный ток в цепи прекратится. Следовательно, для постоянного тока конденсатор представляет собой разрыв цепи, или, иными словами, бесконечно большое сопротивление.

Если же конденсатор включить в цепь переменного тока, то он будет заряжаться попеременно то в одном, то в другом направлении.

При этом в цепи будет проходить переменный ток. Рассмотрим это явление подробнее.

В момент включения напряжение на конденсаторе равно нулю. В течение первой четверти периода, когда напряжение сети будет возрастать (рис. 143), конденсатор будет заряжаться.


Рис. 143. Графики и векторная диаграмма для цепи переменного тока, содержащей емкость

По мере накопления зарядов на обкладках конденсатора напряжение конденсатора увеличивается. Когда напряжение сети к концу первой четверти периода достигнет максимального значения Um, напряжение конденсатора также станет равным Um, заряд конденсатора прекращается и ток в цепи становится равным нулю.

Ток в цепи конденсатора можно определить по формуле

где Δq — количество электричества, протекающее по цепи за время Δt.

Из электростатики известно:

где С — емкость конденсатора;

u — напряжение сети;

uС — напряжение конденсатора.

Окончательно для тока имеем

Из последнего выражения видно, что, когда Δu /Δt максимально (положения а, в, д), i также максимально.

Когда Δu /Δt = 0 (положения б, г на рис. 143), то i также равно нулю.

Во вторую четверть периода напряжение сети будет уменьшаться, и конденсатор начнет разряжаться. Ток в цепи меняет свое направление на обратное.

В следующую половину периода напряжение сети меняет свое направление и наступает перезаряд конденсатора и затем снова его разряд.

Из рис. 143 видно, что ток I в цепи с емкостью в своих изменениях опережает по фазе напряжение конденсатора на 1/4 периода, или 90°.

Сравнивая векторные диаграммы цепей с индуктивностью и емкостью, мы видим, что индуктивность и емкость на фазу тока влияют прямо противоположно.

Пользуясь высшей математикой, можно доказать, что ток в цепи с емкостью пропорционален напряжению UС, приложенному к конденсатору, угловой частоте со и величине емкости конденсатора С;

Величина xС называется емкостным сопротивлением, или реактивным сопротивлением емкости, и измеряется в омах. Выражение закона Ома для цепи переменного тока, содержащей емкость, имеет вид

Та часть напряжения сети, которая приложена к конденсатору, называется емкостным падением напряжения (или реактивной слагающей напряжения) и обозначается UC:

Емкостное сопротивление хС, так же как индуктивное сопротивление xL, зависит от частоты переменного тока.

Но если с увеличением частоты индуктивное сопротивление увеличивается, то емкостное сопротивление, наоборот, будет уменьшаться.

Пример 6. Определить сопротивление конденсатора емкостью 5 мкф при частоте 50 гц:

при частоте 400 гц:

На рис. 144 показана кривая мгновенной мощности в цепи с емкостью. Из чертежа видно, что в первую четверть периода цепь с емкостью забирает из сети энергию, которая запасается в электрическом поле конденсатора.


Рис. 144. Кривая мгновенной мощности в цепи с емкостью

Энергию, запасаемую конденсатором к моменту, когда напряжение на нем равно максимальному значению, можно определить по известной формуле CUм 2 /2.

В следующую четверть периода конденсатор разряжается на сеть, отдавая ей ранее запасенную в нем энергию.

За вторую половину периода явление колебаний энергии повторяется. Таким образом, в цепи с емкостью происходит лишь обмен энергией между сетью и конденсатором без ее потерь.

Поэтому средняя за период мощность, или активная мощность, цепи с емкостью равна нулю, как и в цепи с индуктивностью.

Из графика, изображенного на рис. 144, видно, что мгновенная мощность в цепи с емкостью два раза в течение каждого периода (когда ωt = 45°, 135° и т. д.) достигает максимального значения, равного Uм /√2 ⋅ Iм /√2 = UI.

Этой величиной принято характеризовать количественно процесс обмена энергии между источником и электрическим полем конденсатора. Ее также называют реактивной мощностью и обозначают буквой Q.

Учитывая, что в рассматриваемой цепи U = IxC, получим следующее выражение для реактивной мощности:

Емкостное и индуктивное сопротивление в цепи переменного тока.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного напряже­ния сила тока I=0, а при включении конденсатора в цепь пере­менного напряжения сила тока I ? 0. Следовательно, конденса­тор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.

Мгновенное значение напряжения равно .

Мгновенное значение силы тока равно:

Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2.

Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: , где емкостное сопротивление.

Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты).

Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току).

Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной.

Индуктивное сопротивление в цепи переменного тока

В катушке, включенной в цепь переменного напряжения, си­ла тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи посто­янного напряжения.

Мгновенное значение силы тока:

Мгновенное значение напряжения можно установить, учиты­вая, что u = — εi , где u – мгновенное значение напряжения, а εi – мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению.

.

Следовательно , где амплитуда напряжения.

Напряжение опережает ток по фазе на π/2.

Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим: — закон Ома для цепи с чисто индуктивной нагрузкой.

Величина — индуктивное сопротивление.

Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления.

В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка.

Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной.

Конденсатор в цепи переменного тока. Емкостное сопротивление конденсатора.

Мы знаем, что конденсатор не пропускает через себя постоянного тока. Поэтому в электрической цепи, в которой последовательно с источником тока включен конденсатор, постоянный ток протекать не может.

Совершенно иначе ведет себя конденсатор в цепи переменного тока (Рис 1,а).

Рисунок 1. Сравнение конденсатора в цепи переменного тока с пружиной, на которую воздействует внешняя сила.

В течение первой четверти периода, когда переменная ЭДС нарастает, конденсатор заряжается, и поэтому по цепи проходит зарядный электрический ток i, сила которого будет наибольшей вначале, когда конденсатор не заряжен. По мере приближения заряда к концу сила зарядного тока будет уменьшаться. Заряд конденсатора заканчивается и зарядный ток прекращается в тот момент, когда переменная ЭДС пе-рестает нарастать, достигнув своего амплитудного значения. Этот момент соответствует концу первой четверти периода.

После этого переменная ЭДС начинает убывать, одновременно с чем конденсатор начинает разряжаться. Следовательно, в течение второй четверти периода по цепи будет протекать разрядный ток. Так как убывание ЭДС происходит вначале медленно, а затем все быстрее и быстрее, то и сила разрядного тока, имея в начале второй четверти периода небольшую величину, будет постепенно возрастать.

Итак, к концу второй четверти периода конденсатор разрядится, ЭДС будет равна нулю, а ток в цепи достигнет наибольшего, амплитудного, значения.

С началом третьей четверти периода ЭДС, переменив свое направление, начнет опять возрастать, а конденсатор — снова заряжаться. Заряд конденсатора будет происходить теперь в обратном направлении, соответственно изменившемуся направлению ЭДС. Поэтому направление зарядного тока в течение третьей четверти периода будет совпадать с направлением разрядного тока во второй четверти, т. е. при переходе от второй четверти периода к третьей ток в цепи не изменит своего направления.

Вначале, пока конденсатор не заряжен, сила зарядного тока имеет наибольшее значение. По мере увеличения заряда конденсатора сила зарядного тока будет убывать. Заряд конденсатора закончится и зарядный ток прекратится в конце третьей четверти периода, когда ЭДС достигнет своего амплитудного значения и нарастание ее прекратится.

Итак, к концу третьей четверти периода конденсатор окажется опять заряженным, но уже в обратном направлении, т. е. на той пластине, где был прежде плюс, будет минус, а где был минус, будет плюс. При этом ЭДС достигнет амплитудного значения (противоположного направления), а ток в цепи будет равен нулю.

В течение последней четверти периода ЭДС начинает опять убывать, а конденсатор разряжаться; при этом в цепи появляется постепенно увеличивающийся разрядный ток. Направление этого тока совпадает с направлением тока в первой четверти периода и противоположно направлению тока во второй и третьей четвертях.

Из всего изложенного выше следует, что по цепи с конденсатором проходит переменный ток и что сила этого тока зависит от величины емкости конденсатора и от частоты тока. Кроме того, из рис. 1,а, который мы построили на основании наших рассуждений, видно, что в чисто емкостной цепи фаза переменного тока опережает фазу напряжения на 90°.

Отметим, что в цепи с индуктивностью ток отставал от напряжения, а в цепи с емкостью ток опережает напряжение. И в том и в другом случае между фазами тока и напряжения имеется сдвиг, но знаки этих сдвигов противоположны

Емкостное сопротивление конденсатора

Мы уже заметили, что ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС

Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

Рисунок 2. Зависимость емкостного сопротивления конденсатра от частоты.

Для постоянного тока, т. е. когда частота его равна нулю, сопротивление емкости бесконечно велико; поэтому постоянный ток по цепи с емкостью проходить не может.

Величина емкостного сопротивления определяется по следующей формуле:

где Хс — емкостное сопротивление конденсатора в ом;

f—частота переменного тока в гц;

ω — угловая частота переменного тока;

С — емкость конденсатора в ф.

При включении конденсатора в цепь переменного тока, в последнем, как и в индуктивности, не затрачивается мощность, так как фазы тока и напряжения сдвинуты друг относительно друга на 90°. Энергия в течение одной четверти периода— при заряде конденсатора — запасается в электрическом поле конденсатора, а в течение другой четверти периода — при разряде конденсатора — отдается обратно в цепь. Поэтому емкостное сопротивление, как и индуктивное, является реактивным или безваттным.

Нужно, однако, отметить, что практически в каждом конденсаторе при прохождении через него переменного тока затрачивается большая или меньшая активная мощность, обусловленная происходящими изменениями состояния диэлектрика конденсатора. Кроме того, абсолютно совершенной изоляции между пластинами конденсатора никогда не бывает; утечка в изоляции между пластинами приводит к тому, что параллельно конденсатору как бы оказывается включенным некоторое активное сопротивление, по которому течет ток и в котором, следовательно, затрачивается некоторая мощность. И в первом и во втором случае мощность затрачивается совершенно бесполезно на нагревание диэлектрика, поэтому се называют мощностью потерь.

Потери, обусловленные изменениями состояния диэлектрика, называются диэлектрическими, а потери, обусловленные несовершенством изоляции между пластинами, — потерями утечки.

Ранее мы сравнивали электрическую емкость с вместимостью герметически (наглухо) закрытого сосуда или с площадью дна открытого сосуда, имеющего вертикальные стенки.

Конденсатор в цепи переменного тока целесообразно сравнивать с гиб-костью пружины. При этом во избежание возможных недоразумений условимся под гибкостью понимать не упругость («твердость») пружины, а величину, ей обратную, т. е. «мягкость» или «податливость» пружины.

Представим себе, что мы периодически сжимаем и растягиваем спиральную пружину, прикрепленную одним концом наглухо к стене. Время, в течение которого мы будем производить полный цикл сжатия и растяжения пружины, будет соответствовать периоду переменного тока.

Таким образом, мы в течение первой четверти периода будем сжимать пружину, в течение второй четверти периода отпускать ее, в течение третьей четверти периода растягивать и в течение четвертой четверти снова отпускать.

Кроме того, условимся, что наши усилия в течение периода будут неравномерными, а именно: они будут нарастать от нуля до максимума в течение первой и третьей четвертей периода и уменьшаться от максимума до нуля в течение второй и четвертой четвертей.

Сжимая и растягивая пружину таким образом, мы заметим, что в начале первой четверти периода незакрепленный конец пружины будет двигаться довольно быстро при сравнительно малых усилиях с нашей стороны.

В конце первой четверти периода (когда пружина сожмется), наоборот, несмотря на возросшие усилия, незакрепленный конец пружины будет двигаться очень медленно.

В продолжение второй четверти периода, когда мы будем постепенно ослаблять давление на пружину, ее незакрепленный конец будет двигаться по направлению от стены к нам, хотя наши задерживающие усилия направлены по направлению к стене. При этом наши усилия в начале второй четверти периода будут наибольшими, а скорость движения незакрепленного конца пружины наименьшей. В конце же второй четверти периода, когда наши усилия будут наименьшими, скорость движения пружины будет наибольшей и т. д.

Продолжив аналогичные рассуждения для второй половины периода (для третьей и четвертой четвертей) и построив графики (рис. 1,б) изменения наших усилий и скорости движения незакрепленного конца пружины, мы убедимся, что эти графики в точности соответствуют графикам ЭДС и тока в емкостной цепи (рис 1,а), причем график усилий будет соответствовать графику ЭДС , а график скорости — графику силы тока.

Рисунок 3. а) Процессы в цепи переменного тока с конденсатором и б) сравнение конденсатора с пружиной.

Нетрудно, заметить, что пружина, так же как и конденсатор, в течение одной четверти периода накапливает энергию, а в течение другой четверти периода отдает ее обратно.

Вполне очевидно также, что чем меньше гибкость пружины,- т е. чем она более упруга, тем большее противодействие она будет оказывать нашим усилиям. Точно так же и в электрической цепи: чем меньше емкость, тем больше будет сопротивление цепи при данной частоте.

И наконец, чем медленнее мы будем сжимать и растягивать пружину, тем меньше будет скорость движения ее незакрепленного конца. Аналогично этому, чем меньше частота, тем меньше сила тока при данной ЭДС.

При постоянном давлении пружина только сожмется и на этом прекратит свое движение, так же как при постоянной ЭДС конденсатор только зарядится и на этом прекратится дальнейшее движение электронов в цепи.

А теперь как ведет себя конденсатор в цепи переменного тока вы можете посмотреть в следующем видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector