0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как определить витковое замыкание в обмотках?

Как определить витковое замыкание в обмотках?

Короткое замыкание обмотки ротора является одним из распространённых и в то же время трудно определяемых неисправностей в синхронном генераторе (СГ).

Выявление на ранних стадиях признаков неисправности является важной задачей при эксплуатации СГ [1], поскольку развитие дефекта в обмотке приводит к оплавлению меди витков и прогоранию витковой изоляции. В результате происходит появление высокочастотного колебательного процесса в цепи возбуждения, порождающего пробой изоляции в наиболее ослабленных местах [2]. Нарушается симметрия магнитного тяжения полюсов, что создает дополнительную механическую нагрузку на шейку вала, вызывающую появление микротрещин, при которых дальнейшая эксплуатация СГ невозможна.

Существующие способы выявления витковых замыканий можно разделить на следующие группы: тепловые, параметрические, частотные, вибрационные и методы активной диагностики. Известные существующие способы выявления витковых замыканий, такие как использование индукционных преобразователей [3] или импульсного воздействия на обмотку ротора [4], полностью не решают данную проблему или для их реализации необходима установка дополнительных средств измерения в конструкцию СГ.

Исследовать возможности искусственной нейронной сети (ИНС) при диагностике и выявлении межвитковых замыканий в обмотке ротора синхронного генератора.

Идея использования искусственной нейронной сети для диагностики межвиткового замыкания в обмотке ротора СГ основывается на том, что при поддержке постоянной величины напряжения на выводах СГ существует взаимосвязь между магнитодвижущей силой обмотки ротора F = Ifw и током ротора If. В момент неисправности магнитное поле генератора будет уменьшаться, что станет причиной изменения электродвижущей силы, которая влияет на величину реактивной мощности Q. Поскольку Q зависит от If, то при одном и том же значении тока возбуждения If величина МДС зависит от изменения количества витков обмотки ротора. Таким образом, витковое замыкание в обмотке ротора можно выявлять, определяя изменения соотношений параметров P, Q и If, причем эти параметры генератора будут являться входными нейронами ИНС [5, 6].

Обучение ИНС на основе экспериментальной машины с заранее известным количеством замкнувшихся витков позволит не только определить наличие повреждения, но и оценить его тяжесть.

Экспериментальная установка. Для диагностирования витковых замыканий у синхронных генераторов была создана экспериментальная установка, показанная на рис. 1. В ее состав входят: синхронный генератор (ГАБ-4-Т/230) 1, приводимый во вращение асинхронным двигателем, питаемым частотным преобразователем (Altivar 71) 4.

Для имитации виткового замыкания в синхронном генераторе с параметрами, приведенными в табл. 1, были выведены с обмотки ротора через дополнительные контактные кольца 2 отпайки 3 (4, 10 и 30 % витков полюса).

Неисправности электрооборудования и способы их устранения — Междуфазное замыкание двигателя

Содержание материала

  • Неисправности электрооборудования и способы их устранения
  • Устройство силового трансформатора
  • Принцип действия трансформатора, хх и кз
  • Пускорегулирующая аппаратура
  • Устройство электрических машин постоянного тока
  • Принцип действия генератора и двигателя постоянного тока
  • Двигатели постоянного тока с различными системами возбуждения
  • Устройство синхронных машин
  • Низкое сопротивление изоляции обмоток электрических машин
  • Пропитка и сушка обмоток электрических машин
  • Сушка обмоток силовых трансформаторов
  • Способы сушки обмоток силовых трансформаторов
  • Определение качества трансформаторного масла
  • Механические неисправности электрических машин
  • Работа асинхронного двигателя при неноминальных условиях
  • Внутренний обрыв одной фазы статора асинхронного двигателя
  • Другие неисправности асинхронного двигателя
  • Неисправности обмоток статора и ротора асинхронного двигателя
  • Соединение обмотки асинхронного двигателя с корпусом
  • Междуфазное замыкание двигателя
  • Маркировка выводных концов электрических машин переменного тока
  • Определение паспортных данных асинхронного электродвигателя
  • Установки повышенной частоты из двух асинхронных машин и их неисправности
  • Неисправности машин постоянного тока и способы их устранения
  • Маркировка выводных концов машин постоянного тока, паспортные данные
  • Неисравности синхронных машин и способы их устраненияе
  • Неисправности силовых трансформаторов и способы их устранения
  • Разборка и сборка, маркировка выводных концов трансформатора
  • Неисправности пускорегулирующей аппаратуры и способы их устранения
  • Вопросы по технике безопасности при испытаниях и ремонте электрооборудования

При замыкании между фазами ротора с контактными кольцами в обмотках статора протекает колеблющийся ток, превышающий номинальный. Ротор может вращаться с полусинхронной частотой вращения. Пробой между фазами ротора чаще всего происходит при пуске двигателя. Место замыкания между фазами статора или ротора можно определить после размыкания звезды или треугольника путем подачи на соединенные фазы напряжения от машины постоянного тока, например как и при замыкании на корпус. При междуфазном замыкании необходимо частично или полностью заменить обмотку.
Витковое замыкание. Наличие замкнутых витков в одной из фаз обмотки статора приводит к увеличению тока в этой фазе, двигатель работает с ненормальным гулом, короткозамкнутые витки перегреваются, изоляция витков горит, появляется дым. Если двигатель не будет отключен защитой, то витковое замыкание переходит в междуфазное или в замыкание па корпус. Витковое замыкание в обмотке ротора с контактными кольцами наиболее ярко проявляет себя в процессе пуска двигателя. Бо время’ пуска величина тока в фазах статора меняется, короткозамкнутые витки обмотки ротора перегреваются и может появиться дым, время пуска затягивается.
Выявить витковое замыкание в обмотках статора и ротора без разборки двигателя можно при помощи опыта на трансформацию. Для этого обмотку статора включают на пониженное напряжение при разомкнутых кольцах ротора. В каждую фазу статора включают амперметр. При витковом замыкании в обмотке статора или ротора амперметры показывают разные токи. Далее медленно проворачивают ротор: если показания амперметров не зависят от положения ротора, то витковое замыкание — в обмотке статора, а если при повороте ротора показания амперметров меняются, то витковое замыкание — в обмотке ротора. Чтобы определить катушку с витковым замыканием, двигатель следует разобрать. Далее на пазовую часть одной активной стороны катушки нужно установить электромагнит переменного тока (рис. 69), а ко второй активной стороне этой катушки приложить ножовочное полотно или стальную линейку. При наличии виткового замыкания линейка притягивается к пазу переменным магнитным полем и вибрирует. Таким образом должны быть проверены все катушки статора. Если нет электромагнита, то катушку с витковым замыканием можно найти измерением сопротивления фаз переменному току. Для этого от сварочного трансформатора к каждой фазе поочередно подводят напряжение порядка 15-20% номинального и измеряют величину тока. Делением напряжения на ток находят фазу, имеющую минимальное сопротивление. После определения поврежденной фазы ее оставляют под напряжением, и катушка с короткозамкнутыми витками будет сильно нагреваться.
Если необходимо исключить катушку из схемы, то ее следует разрезать в лобовых частях. Вопрос о возможности исключения катушки из схемы решается по аналогии с замыканием катушки на корпус. Если невозможно исключить катушку, ее необходимо заменить новой.


Рис. 69. Определение виткового замыкания в обмотке машины переменного тока: 1— статор; 2 — электромагнит; 3 —проверяемая катушка; 4 — стальная линейка.

«Перевернута» одна из фаз обмотки. При включении двигателя с «перевернутой» фазой статора (перепутаны начало и конец фазы) токи в фазах двигателя выше номинальных и резко отличаются друг от друга, а ротор вращается с полусинхронной частотой вращения. При соединении обмотки статора в треугольник включение двигателя с перевернутой фазой равносильно короткому замыканию. В роторных обмотках такая неисправность встречается очень редко, и ее можно определить при опыте на трансформацию. При этом измеряют напряжение на кольцах ротора. Если из трех замеров вольтметр покажет 2 раза фазное напряжение, а один раз линейное — фаза «перевернута».
Если имеется сомнение в правильности разметки выводных концов обмотки, то следует провести маркировку выводных концов (способы маркировки приводятся далее).

Рис. 70. Проверка целости стержней короткозамкнутого ротора: 1 — электромагнит переменного тока; 2—проверяемый ротор; 3 — лист электрокартона со стальными опилками.

Обрыв стержней в беличьей клетке короткозамкнутого ротора. В последние годы указанная неисправность встречается относительно часто в роторах, залитых алюминием.
При работе двигателя с поврежденными роторными стержнями частота вращения ротора при одинаковой нагрузке на вал будет меньше, чем в таком же двигателе с исправным ротором. При значительном количестве поврежденных стержней ротор нагруженного двигателя останавливается, двигатель терпит аварию, если он не отключается защитой.
Во всех случаях двигатель с поврежденными роторными стержнями, работающий под нагрузкой, потребляет из сети повышенный ток и перегревается больше исправного двигателя.
Иногда наблюдается выход из строя роторных стержней, сделанных из латуни или меди. Это чаще всего бывает при внезапном заклинивании приводного механизма или при пуске электрического двигателя, приводящего во вращение неисправные механизмы с большими маховиками.
Если при эксплуатации двигателя появляются признаки неисправности беличьей клетки ротора, необходимо двигатель разобрать и проверить роторные стержни. Рекомендуется проверять целость стержней при профилактических ремонтах двигателя.
Проверять исправность беличьей клетки ротора лучше всего электромагнитом переменного тока и листом картона с чугунными или стальными опилками. Ротор ставят в раздвижной электромагнит, как показано на рисунке 70.
Желательно, чтобы оси полюсов электромагнита приближались к поверхности ротора в точках, отстоящих одна от другой на треть длины окружности ротора.
В обмотку электромагнита включают ток, переменным магнитным потоком наводится э. д. с. во всех роторных стержнях, ток протекает только по целым стержням. На поверхность ротора накладывают лист электрокартона со стальными опилками. Вдоль целых роторных стержней опилки рассыпаются. Если стержни повреждены, опилки не рассыпаются. Поворачивая ротор, можно проверить все роторные стержни.
Ремонт беличьих клеток роторов с медными или латунными стержнями проводится относительно просто. Поврежденные стержни извлекают из пазов, а вместо них забивают новые и приваривают их к замыкающим кольцам газовой сваркой.
Значительно сложнее ремонтировать беличью клетку, отлитую из алюминия. В этом случае поступают так. На токарном станке обрезают замыкающие кольца клетки ротора. Затем ротор опускают в 2%-ный раствор каустической соды, температура которого должна быть порядка 50° С, и выдерживают в течение суток. Далее ротор промывают горячей водой, шинуют латунными стержнями соответствующих пазу размеров и приваривают стержни к замыкающим кольцам газовой сваркой. Сечение замыкающих стержни колец должно быть в 4-5 раз больше сечения роторных стержней.
Очень эффективно алюминий из пазов ротора удаляется при погружении ротора в расплавленный свинец, но этот способ дороже. Нельзя выплавлять алюминий из пазов ротора в кузнечных горнах и печах, так как активная сталь ротора подвергается короблению. После ошиновки и сварки клетки необходимо провести статическую балансировку ротора.
Местные перегревы активной стали статора. В отдельных случаях активная сталь неравномерно нагревается, что вредно отражается на изоляции обмотки. Отдельные места активной стали нагреваются из-за отсутствия изоляции между листами.
Межлистовые замыкания появляются при задевании ротора о статор или при наличии оплавлений активной стали вследствие различных замыканий в обмотке статора. Обнаружить межлистовые замыкания можно при разборке двигателя.

Почему возникает межвитковое замыкание обмоток двигателя и как его определить

Причины возникновения

Факторов, влияющих на появление межвиткового замыкания электродвигателя может быть несколько. Рассмотрим основные причины, почему оно возникает:

  1. Самая распространенная неисправность, при которой происходит пробой обмоток, это перегрузка двигателя. Она может возникнуть при выходе из строя механических деталей. Например, заклинил подшипник ротора, возникла неисправность в транспортере, редукторе или другом механизме. В результате по обмоткам протекает повышенный ток, что приводит к перегреву проводов и разрушению изоляции. Происходит короткое замыкание (КЗ) между витками.
  2. При изготовлении на заводе допустили брак. Это случается не часто, но не исключено. В процессе эксплуатации изоляция трескается. Обмотка повреждается, происходит межвитковое замыкание.
  3. Во время ремонта был нарушен технологический процесс. Обмотка получилась очень тугой. В процессе работы электродвигатель нагревается, витки расширяются. Из-за туго намотанной электрообмотки, расширение невозможно. Лак на проводах повреждается, происходит межвитковое замыкание.
  4. В результате неправильного хранения в двигатель попадает вода, что может привести к пробою изоляции.

С такой неисправностью электродвигатель долго работать не сможет. Произойдет дальнейший нагрев обмотки. Последствия такой неисправности приводят к выходу двигателя из строя. Поэтому важно вовремя определить неисправность, и принять меры по ее устранению.

Диагностика неисправности

Основным признаком возникновения межвиткового замыкания является неравномерный нагрев корпуса. Это происходит по причине повышенного потребления тока одной (неисправной) обмотки. Если возник перегрев одной части корпуса, то двигатель необходимо обесточить и выполнить диагностику.

Ее выполняют следующим образом:

  • Проверяют напряжение на всех обмотках. Оно должно быть одинаково, т.е. в сети должен отсутствовать перекос фаз. После этого замеряют токи в каждой обмотке. Замеры производят токовыми клещами. Если ток в одной обмотке отличается от остальных в большую сторону, то это говорит о наличии неисправности в данной обмотке.
  • С помощью высокоточного омметра замеряют сопротивление обмоток. Значения должны быть одинаковыми. Обычным прибором проверить наличие замыкания невозможно. Т.к. при коротком замыкании всего двух витков, сопротивление изменится незначительно.
  • Замыкание на корпус определяют с помощью мегомметра. Для этого один конец соединяют с корпусом, а второй подсоединяют к обмоткам поочередно. Таким образом, проверяют целостность сопротивления изоляции. В идеале оно должно быть одинаково на каждой обмотке или иметь незначительные отклонения. При этом следует учитывать, что оно меняется в зависимости от температуры проводников.
Читать еще:  Как сделать прочную деревянную дверь для дома своими руками

На нижеприведенном рисунке представлена таблица зависимости изменения сопротивления изоляции от температуры:

Как определить неисправную обмотку

Для определения межвиткового замыкания в электродвигателе, его необходимо разобрать. Произвести визуальный осмотр. Дефект можно определить по внешнему виду обмоток. На них видны места кроткого замыкания, как показана неисправность ротора и статора на рисунках снизу:

Однако зачастую признаки межвиткового замыкания обнаружить визуально невозможно. Поэтому обслуживающий персонал должен знать, что делать в таких ситуациях. При отсутствии видимых неисправностей применяют следующие методы.

Поиск неисправности с помощью металлического шарика

Выявить замыкание изоляции можно при помощи понижающего трехфазного трансформатора. Напряжение вторичной обмотки не должно превышать 40 Вольт.

На разобранный двигатель подается напряжение с трансформатора. Внутрь двигателя по кругу запускают металлический шарик. При исправных обмотках он начинает «бегать» по кругу без остановки.

Если имеется замыкание обмотки, то шарик, сделав два три круга примагничивается в месте неисправности.

Если отсутствует шарик, проверить можно с помощью пластины из трансформаторного железа. Можно использовать железо от неисправного трансформатора. Пластину прикладывают по кругу поочередно. В неисправном месте пластина начнет вибрировать. В остальных местах она примагничивается.

Проверяя исправность электродвигателя, не стоит забывать о технике безопасности. Корпус двигателя должен быть заземлен. При этом, категорически запрещено подавать напряжение выше 40 Вольт на обмотки.

На рисунке снизу показана методика проверки с помощью шарика:

Проверка специальным прибором

Поиск межвиткового замыкания электродвигателя можно производить с помощью прибора для проверки пробоя изоляции обмоток. Его можно приобрести через интернет или сделать самостоятельно. Многочисленные схемы приведены в интернете. Они не сложные. Повторить может любой специалист, имеющий навыки работы с паяльником и разбирающийся в электросхемах.

Как определить неисправность, подробно расписано в инструкции к прибору. Диагностика выполняется за считанные минуты. Однако, для выполнения диагностики необходим осциллограф.

Это дорогостоящий прибор. Работать на нем умеют не все мастера. Поэтому этот метод проверки не получил массового распространения.

Сейчас промышленность выпускает устройства, которые не требуют применения осциллографа. В нем имеются два светодиода, по которым определяют неисправность.

Прибор представляет собой генератор, колебательный контур которого состоит из конденсатора и обмотки двигателя. Подстроечным резистором добиваются возбуждения контура. В этом случае светодиод начинает мигать. Поочередно подсоединяют все обмотки. При подключении неисправной обмотки, светодиод будет гореть постоянно. Т.е. произойдет срыв генерации.

Диагностика якоря с помощью дросселя

Для проверки якоря применяют дроссель. Он представляет собой трансформатор с вырезанным сердечником. Используется прибор заводского изготовления или самодельный.

Сделать его можно при наличии неисправных вибрационных насосов «Малыш» или «Ручеек». Подробная инструкция с описанием имеется в интернете.

Проводились измерения на заводском приборе и самодельном, изготовленном по методике, описанной в интернете. Результат оказался одинаковым.

Как проверять неисправность данным устройством. В вырез помещается якорь. На дроссель подается напряжение. При этом обмотка якоря будет представлять вторичную обмотку трансформатора.

С помощью пластины из трансформаторного железа проверяем исправность обмотки. Постепенно поворачивая якорь, в месте пробоя, пластина примагничивается к якорю и начинает вибрировать. Это показано на нижеприведенном рисунке:

Измерение сопротивления тестером

При отсутствии дросселя можно произвести проверку аналоговым тестером. Стоит отметить, что таким образом можно проверить обрыв обмотки, а замыкание витков проверяют вышеописанным способом.

Для этого производят замеры между ламелями якоря. Сопротивление проводников должно быть одинаковым.

Обязательно производят проверку замыкания проводов на корпус. Для этого необходимо один конец тестера соединить с корпусом и поочередно прозвонить каждую обмотку. Такую проверку выполняют при условии отсутствия обрыва в обмотках.

На фото снизу показано, как измерять сопротивление проводников:

Проверка статора тестером

Проверить целостность обмотки статора можно с помощью тестера. Для этого достаточно измерить сопротивление каждой в отдельности. Замеры выполняют с помощью высокоточного прибора. Не лишне проверить на отсутствие пробоя изоляции на корпус с помощью мегомметра.

На рисунке вверху показана прозвонка целостности обмоток:

Заключение

Во время эксплуатации определить межвитковое замыкание обмоток электродвигателя достаточно сложно. Да и возникает оно нечасто. Обычно двигатели с таким дефектом работают до последнего момента. Пока из него не пойдет дым.

Поэтому у обслуживающего персонала не возникает вопрос, как устранить неисправность. Двигатель отдают на перемотку. Аналогично поступают при своевременном обнаружении КЗ обмоток, перематывают неисправную часть. При этом нужно учитывать, что замыкание витков между собой устранить без перемотки невозможно.

Как определить место короткого замыкания в обмотках электрических машин переменного тока

Возможны следующие замыкания в обмотках электрических машин переменного тока: между витками одной катушки, между катушками или катушечными группами одной фазы, между катушками разных фаз.

Основным признаком, по которому можно найти замыкание в обмотках электродвигателя переменного тока, является нагрев короткозамкнутого контура. Для этого необходимо ощупать обмотку электродвигателя после ее отключения. Ощупывание обмотки следует производить только при выключенной обмотке!

Чтобы найти дефект в фазном роторе асинхронного двигателя, ротор затормаживают и включают статор в сеть. В случае замыкания значительной части обмотки ротора или если двигатель имеет большую мощность, затормаживание при номинальном напряжении становится невозможным, так как вызывает большую силу тока в статоре и срабатывание защиты двигателя. В таких случаях испытание рекомендуется производить при пониженном напряжении.

Рисунок 1. Пояснение признаков замыкания в обмотках при соединении звездой (а) и треугольником (б)

В некоторых случаях короткозамкнутую часть обмотки электродвигателя можно сразу определить по внешнему виду — по обуглившейся изоляции.

Следует иметь в виду, что при наличии параллельных ветвей в обмотке короткое замыкание в одной из ветвей фазы (при значительном числе замкнувшихся витков) может вызвать нагрев и другой ветви, не имеющей короткого замыкания, так как последняя оказывается замкнутой витками дефектной ветви обмотки.

Фазу, имеющую замыкание, можно найти по несимметрии потребляемого тока из сети. При соединении обмотки электродвигателя звездой (рис. 1, а) в фазе, имеющей замыкание, ток (A3) будет больше, чем в двух других фазах. При соединении обмотки электродвигателя треугольником (рис. 1, б) в двух фазах сети, к которым присоединена дефектная фаза, токи (А1 и A3) будут больше, чем в третьей фазе (А2).

Опыт определения дефектной фазы рекомендуется производить при пониженном напряжении (1/3 — 1/4 номинального), в случае асинхронного двигателя с фазным ротором обмотка последнего может быть разомкнута, а в случае асинхронного двигателя с короткозамкнутым ротором или же в случае синхронного двигателя ротор может вращаться или быть заторможенным. При проведении опыта с синхронным двигателем в неподвижном состоянии его обмотка возбуждения должна быть замкнута накоротко или же на разрядное сопротивление.

В опыте с неподвижной синхронной машиной токи в ее фазах будут различаться даже в том случае, если машина исправна, что объясняется магнитной асимметрией ее ротора. При поворачивании ротора эти токи будут изменяться, однако при исправной обмотке пределы их изменений будут одинаковы.

Фаза, имеющая замыкание, может быть определена и по значению ее сопротивления постоянному току, измеренного мостом либо по методу амперметра — вольтметра, меньшее сопротивление будет иметь фаза с замыканием. Если же нет возможности разъединить фазы, то производят измерения трех междуфазных сопротивлений.

В случае соединения фаз электродвигателя звездой (рис. 1, а) наибольшим будет междуфазное сопротивление, измеренное на концах фаз, не имеющих замыканий, два других сопротивления будут равны между собой и будут меньше первого. В случае соединения фаз электродвигателя треугольником (рис. 1, б) наименьшее сопротивление будет на концах фазы, имеющей замыкание, два других измерения дадут большие значения сопротивления, причем оба они будут одинаковы.

Катушечные группы или катушки, имеющие замыкания, могут быть найдены при питании переменным током всей ей обмотки или только дефектной фазы по нагреву или по значению падения напряжения на их концах. Катушечные группы или катушки, имеющие замыкание, будут сильно нагреты и иметь меньшее падение напряжения (при измерении напряжения удобно прльзоваться острыми щупами, которыми прокалывают изоляцию соединительных проводов). В этом случае, так же как и выше, дефектные катушки можно найти по значению сопротивления постоянному току.

Замыкания в обмотке генератора могут быть найдены по значению индуктированной ЭДС в фазах обмотки, в ее катушечных группах или в катушках. Для этого генератор пускают в ход, дают ему небольшое возбуждение и производят измерения фазных напряжений; если обмотки соединены треугольником, то фазы следует разъединить. Фаза, имеющая замыкание, будет иметь меньшее напряжение. Для нахождения катушечной группы или катушки, имеющей замыкание, измеряют напряжение на их концах. Для высоковольтной машины опыт можно произвести при остаточном напряжении.

Статорную обмотку включают на пониженное напряжение (1/3 — 1/4 номинального) при разомкнутом роторе и измеряют напряжение на кольцах ротора, медленно проворачивая ротор. Если напряжения на кольцах ротора (попарно) не равны между собой и меняются в зависимости от положения ротора по отношению к статору, то это указывает на замыкание в статорной обмотке.

При замыкании в роторной обмотке (при исправной статорной) напряжение между кольцами ротора будет неодинаковым и не будет меняться в зависимости от положения ротора.

Опыт может быть произведен при питании ротора и измерении напряжения на зажимах статора, при этом получится обратная картина. Подводимое к ротору напряжение должно составлять 1/3 — 1/4 номинального напряжения на кольцах ротора, т. е. напряжения на кольцах при неподвижном роторе и статоре, включенном на номинальное напряжение.

После того как установлено, какая из обмоток (роторная или статорная) имеет соединение между витками, определяют дефектную фазу, катушечную группу или катушку рассмотренными выше способами.

В сложных случаях (при замыкании большого числа катушек) или когда короткозамкнутую ветвь по каким-либо причинам не удается выявить, прибегают к методу деления обмотки на части. Для этого обмотку делят сначала пополам и проверяют мегомметром соединение между собой этих частей. Затем одну из этих частей делят снова на две части и каждую из них проверяют на соединение с первой половиной и так далее до тех пор, пока не будут найдены катушки, имеющие соединение.

Для наглядности на рис. 2 схематически представлен этот способ нахождения дефекта в фазе, имеющей восемь катушечных групп, при наличии соединения между катушками 2 и 6 катушечных групп. Деление обмотки на части показано в последовательном порядке.

Способ последовательного деления на равные части позволяет обойтись меньшим числом распаек, чем при делении всей обмотки на катушечные группы.

Рис. 2 Нахождение короткого замыкания между катушками одной фазы

Если замыкание произошло между двумя фазами, то место соединения находят аналогично предыдущему, разъединяя обмотки пофазно. Катушки одной из фаз, имеющей соединение, разделяют на две части и мегомметром проверяют наличие соединений каждой такой половины со второй фазой. Затем ту часть, которая соединена с другой фазой, снова разделяют на две части и каждую из них снова проверяют и т. д.

Метод последовательного деления на части применяют при нахождении замыкания в обмотках, имеющих параллельные ветви. В этом случае необходимо дефектные фазы разделить на параллельные ветви и определить сначала, между какими ветвями имеется соединение, а уж затем применить к ним этот метод.

Ремонт генераторов

К неисправностям генераторов переменного тока относятся:

  • обрыв или межвитковое замыкание обмоток статора
  • замыкание на массу изолированных выводов статора или ротора
  • обрыв или пробой диодов у генераторов со встроенными выпрямителями
  • износ поверхности контактных колец и плохой контакт их со щетками
  • износ подшипников, вала ротора и шкива

Обрыв в цепи обмоток возбуждения и обмоток статора определяют контрольной лампой, от аккумуляторной батареи, или омметром. При обрыве в цепи лампа не горит, а омметр показывает большое сопротивление. Замыкание обмоток на массу определяют при помощи контрольной лампы напряжением 220 В, соединяя один щуп с выводами обмоток (поочередно), а другой — на корпус. Замыкание обмотки возбуждения ротора на массу проверяют аналогично. Одним щупом касаются ротора, а другим поочередно контактных колец у генераторов Г-243, Г-250 или клеммы «Ш» обмотки возбуждения у генератора Г-305. Если в течение 1—2 мин лампа не загорится — изоляция обмотки хорошая.

Межвитковое замыкание в фазовой обмотке и обмотке возбуждения определяют измерением сопротивления обмотки омметром, показание которого сравнивают с величиной сопротивления эталонной обмотки. Если сопротивление проверяемой обмотки значительно меньше сопротивления эталонной, то в ней имеется межвитковое замыкание. Эту неисправность в обмотках определяют также индукционным способом. В витках проверяемой обмотки, помещенной в переменное магнитное поле, индуктируется э.д.с. Если в обмотке есть замкнутые витки, то под действием наведенного тока происходит ее нагрев. На приборе Э-202 для проверки якорей нагрев происходит за 3- 5 мин, даже если в замкнутом состоянии находится 1-2 витка.

Читать еще:  Полиэтиленовые трубы и фитинги для труб ПНД

Рис. Определение межвиткового замыкания обмотки при помощи индукционного прибора: 1 — дополнительный магнитопровод; 2 — проверяемая обмотка; 3 — магнитопровод прибора; 4 — обмотка прибора.

У обмоток статора межвитковое замыкание можно определить не вынимая их из пазов, с помощью дефектоскопа КИ-959. Дефектоскоп состоит из расположенных друг за другом в общем корпусе индукционного А и сигнального Б аппаратов. Прибор накладывают на зубцы пазов или вдоль проводников испытуемой обмотки одновременно сердечниками двух аппаратов. Обмотка аппарата А включается в сеть постоянного (или переменного) тока напряжением 12-18 В. При этом у испытуемой обмотки под действием магнитного поля индукционного прибора будет наведена э.д.с., а при наличии виткового замыкания по ней потечет ток и вокруг проводников испытуемой обмотки возникнет собственное магнитное поле, под действием которого в обмотке аппарата Б возникнет э.д.с. и загорится неоновая лампа.

Рис. Определение мижвиткового замыкания обмотки статора при помощи дефектоскопа КИ-959:
а — схема дефектоскопа; А — индукционный аппарат; Б — приемно-сигнальный аппарат; 1 — конденсатор; 2— пружина; 3 — прерыватель; 4 — индукционная катушка; 5 — сердечник; 6 — неоновая лампа; 6 — дефектоскоп, установленный в статоре: 1 — проверяемые обмотки; 2 — дефектоскоп; 5 — корпус статора.

Дефектоскоп КИ-959 применяют для проверки межвиткового замыкания в обмотке ротора (якоря), который накладывают вдоль пазов.

В местах обрыва концы обмотки зачищают, протравливают в растворе хлористого цинка, облуживают, скручивают, пропаивают припоем ПОC-40 (в качестве флюса служит канифоль). Места пайки промывают в воде, обматывают хлопчатобумажной лентой, пропитывают лаком ГОР-95 или МЛ-92 и просушивают. Сопротивление изоляции должно быть не менее 0,5 Ом. Поврежденные концы выводов с наконечниками зачищают от изоляции на длину 8-10 мм, протравливают, облуживают, надевают на концы хлорвиниловые трубки и припаивают наконечники. Перед укладкой фазовых обмоток в пазы необходимо уложить изоляцию из картона марки ЭВ. Обмотку в пазах закрепляют текстолитовыми клиньями.

Нарушение контакта в щеточном узле устраняют заменой щеток, если их размер вышел из допустимой величины. Незначительно изношенные контактные кольца и щетки зачищают стеклянной шкуркой и притирают друг к другу. При значительном неравномерном износе колец их обтачивают на токарном станке. Уменьшать диаметр колец более чем на 1 мм не допускается.

Для проверки упругости пружины щетку, находящуюся в щеткодержателе, прижимают к чашке весов таким образом, чтобы щетка выступала на 2 мм. Усилие должно быть 1,8-2,6 Н.

Неисправностями выпрямительного блока являются пробой диодов и нарушение контакта в перемычках. При проверке диода его поочередно подключают в прямом и обратном направлеА нии к аккумуляторной батарее через последовательно включенную лампу мощностью 15 Вт. Если имеется пробой, лампа будет гореть при подключении диода в прямом и обратном направлении. При нарушении контакта в переходах лампа не будет гореть ни при прямом, ни при обратном направлении. Проверку диодов производят при отсоединенной обмотке статора. Пробитый диод заменяют новым, к которому припоем ПОС-ЗО припаивают провод фазовой обмотки статора. Пайка должна происходить в течение 5 с, чтобы диод в процессе пайки не нагрелся свыше 150 «С.

Генератор собирают из новых и восстановленных деталей. У собранного генератора вал ротора должен вращаться легко от руки и не задевать за статор. Продольное перемещение ротора — не более 0,1 мм. Радиальное биение шкива допускается до 0,3 мм, а торцовые — до 0,5 мм.

После сборки генератор обкатывают , в течение 5-10 мин и испытывают без нагрузки, с номинальной нагрузкой и при максимальной частоте вращения ротора без нагрузки. Испытания проводят на стенде К-968. Обмотки возбуждения подключают к аккумуляторной батарее. Нагрузку генератора регулируют реостатом стенда.

При испытании без нагрузки генератор устанавливают в крепежное устройство и соединяют муфтой ротор с приводом стенда. Увеличивая плавно частоту вращения, наблюдают за показанием вольтметра. При достижении 12,5 В фиксируют частоту вращения ротора генератора. У генераторов Г-250, Г-273, Г-305 она должна быть соответственно 900, 1050, 2900 мин-1.

Затем генератор испытывают под номинальной нагрузкой. Для этого реостатом стенда поддерживают номинальный ток и постепенно увеличивают частоту вращения ротора генератора, пока напряжение не достигнет 12,5 В. Частота вращения, при которой генераторы Г-250, Г-273 и Г-305 с номинальной нагрузкой соответственно 28, 20 и 32 А развивают напряжение 12,5 В, составляет 2100, 2100 и 5100 мин-1.

После этого генератор испытывают без нагрузки и без возбуждения на максимально допустимой частоте вращения в течение 1 мин. При этом нагрев его не должен превышать 70 С», не допускаются стуки и шумы, не характерные для исправных генераторов.

Большая Энциклопедия Нефти и Газа

Наличие — витковое замыкание

Для отличия выводных концов рабочей и пусковой обмоток статора, присоединенных к проходным контактам, достаточно при замерах обнаружить разницу в сопротивлении той и другой обмоток. Однако для проверки наличия витковых замыканий в обмотках статора или для определения напряжения, для которого предназначен данный электродвигатель, должна быть измерена также фактическая величина сопротивления каждой обмотки с точностью до десятой доли ома. [31]

Вибрации фундаментов обычно имеют место в случаях, когда нарушена центровка агрегатов, плохо отбалансированы роторы либо слабо укреплены анкерные болты. Вибрации могут также иметь место при наличии витковых замыканий в роторе генератора и при неудовлетворительной шихтовке железа статора. [32]

До их установки проверку можно произвести, разложив ТТ на металлическом листе, что занимает много времени и требует значительных физических усилий. В тех случаях, когда имеются подозрения на наличие виткового замыкания во вторичной обмотке у таких трансформаторов тока, следует измерить сопротивление изоляции ее относительно сердечника. Присоединить испытательный провод от мегаомметра к сердечнику для этого можно, только частично сняв оплетку с ТТ или очень осторожно, чтобы не повредить вторичную обмотку, сверху ( обязательно около клина, так как провод обмотки не переходит клин поверху) проколов оплетку шилом до контакта со сталью сердечника. [33]

Практически за установившуюся температуру обмотки машины принимается температура, которая устанавливается при неизменных значениях нагрузки и температуры охлаждающего воздуха. Точность измерения сопротивлений постоянному току обмоток статора и ротора машины и всех других вспомогательных устройств дает возможность выявить наличие витковых замыканий , состояние электрических контактов ( соединений), наличие обрыва цепи, состояние паек, величину нагрева обмоток и др. Поэтому эти измерения должны проводиться очень тщательно. [34]

При этом определяется сопротивление постоянному току обмоток, расположенных на общих сердечниках. Наличие витковых замыканий определяется по отклонению коэффициента трансформации, увеличенному нагреву, увеличенному значению тока намагничивания или уменьшению падения напряжения на обмотке, пониженному сопротивлению обмотки постоянному или переменному току. [35]

В противном случае делаются повторные испытания и если такой результат при этом повторяется, то делается предположение о наличии виткового замыкания в роторе. Об этом ставится в известность руководство станции и делаются специальные испытания для определения и обнаружения виткового замыкания в роторе. При наличии виткового замыкания включение машины в работу не допускается. [36]

Витковое замыкание обнаруживается по ненормальному и неравномерному нагреву катушки и уменьшению тягового усилия. Замыкание витков сопровождается также значительны; увеличением потребляемой мощности. Чтобы убедиться в наличии виткового замыкания , необходимо измерить омическое сопротивление катушки и сравнить его с данными аналогичной исправной катушки. Сопротивление обмотки, в которой есть замкнутые витки, всегда будет меньше ( иногда в несколько раз) сопротивления обмотки такой же исправной катушки. [37]

Если проверка изоляции и целости обмоток трансформатора мегаомметром не выявила наличия неисправности, то этого еще недостаточно для заключения о возможности включения трансформатора в работу. Дело в том, что весьма распространенным видом повреждения трансформаторов является витковое замыкание. Перегорание вставки ПП указывает на наличие виткового замыкания . [38]

Дополнительные проверки для трансформаторов тока с самой низкой ВАХ, если есть подозрения о наличии виткового замыкания, проводят в сравнении с результатами таких же проверок на заведомо исправном аналогичном ТТ. Измерение Ki первичным током производят, включив во вторичную цепь ТТ резистор ( рис. 9.17) сопротивлением ( 10 — 30) ZHOM. У исправных ТТ значение Ki изменяется незначительно, при наличии виткового замыкания значение вторичного тока уменьшается, Ki увеличивается. Ом) при одном замкнутом витке получено соответственно / ( / 150; 172; 220; 250, у исправного ТТ Ks увеличился незначительно. [39]

При производстве электродвигателей после пропитки секций, намотанных эмалированными проводами, могут возникать межв итковые замыкания. Поэтому в лабораторной практике в кабельной промышленности используются приборы для определения межвитковых замыканий; более широкое применение имеют эти приборы на предприятиях — потребителях эмалированных проводов с целью контроля качества технологического процесса. Прибор настраивается для испытания определенного типа катушек, причем при испытании эталонных катушек ( не имеющих короткозамкнутых витков или с допустимым их количеством) стрелка микроамперметра занимает нормальное положение. Когда затем вместо эталонной катушки на сердечник датчика надевается испытываемая катушка, при наличии витковых замыканий сверх установленного предела мост выходит из состояния равновесия, а стрелка микроамперметра отходит от нормального положения. [40]

При витковом замыкании сопротивление обмотки становится меньшим. Это приводит к увеличению тока в обмотке и перегреву проводов. Если же значительная часть обмотки будет отключена, то повышение температуры проводов может дойти до такой степени, что разрушит вини-флексовую изоляцию и вызовет подгорание масла. Таким образом, уменьшение сопротивления обмотки, а также потемнение масла и характерный запах подгоревшего масла свидетельствуют о наличии виткового замыкания . [41]

Отклонения допускаются в пределах погрешности измерений. Обращается особое внимание на то, чтобы характеристика стремилась в начало координат. В противном случае делаются повторные испытания, и если результат повторяется, то делается предположение о наличии витко-вого замыкания в роторе. Об этом ставится в известность руководство станции и производятся специальные испытания для определения и обнаружения виткового замыкания в роторе. При наличии виткового замыкания включение машины в работу не допускается. Далее с машины снимается полностью возбуждение, отключается АГП и производится подготовка к подъему напряжения на генераторе, снимается закоротка, отключаются выключатель и соответствующие разъединители для исключения случайного включения возбужденного генератора на общие шины без проверки чередования фаз и синхронизации. [42]

В катушках переменного тока проверяется отсутствие витковых замыканий. Проверка ведется переменным током 50 Щ напряжением, равным номинальному напряжению катушки. Испытание на витковое замыкание выполняется при помощи трансформатора с разъемным маг-нитопроводом и вольтметра. Катушки, намотанные на металлический каркас или сердечник, испытанию на витковое замыкание не подвергаются. Катушки с наличием виткового замыкания идут в брак или возвращаются на повторную перемотку. Испытание на витковое замыкание делается первый раз после намотки к атушки ( до изолировки) и второй раз. [43]

Характеристика короткого замыкания генератора представляет собой зависимость тока в обмотке статора / к 3 от тока ротора / в. Характеристика снимается постепенным увеличением тока ротора с помощью реостата возбуждения возбудителя ступенями и одновременной записью установившихся значений на каждой ступени тока ротора и тока во всех фазах статора. Отклонения допускаются в пределах погрешности измерений. Обращается особое внимание на то, чтобы характеристика стремилась в начало координат. В противном случае делаются повторные испытания и если такой результат повторяется, то делается предположение о наличии виткового замыкания в роторе. [44]

Межвитковое замыкание электродвигателя

Межвитковое замыкание электродвигателя

Причины межвиткового замыкания

Если вы читали предыдущие статьи, то знаете что межвитковое замыкание электродвигателя составляет 40% неисправностей электродвигателей. Причин для межвиткового замыкания может быть несколько.

Перегруз электродвигателя — нагрузка на электроустановку превышает норму вследствие чего обмотки статора нагреваются и изоляция обмоток разрушается что приводит к межвитковому замыканию. Нагрузка может возникнуть из за неправильной эксплуатации оборудования. Номинальную нагрузку можно определить по паспорту электроустановки или прочитать на табличке электродвигателя. Также перегруз может возникнуть из за механических повреждений самого электродвигателя. Заклинившие или сухие подшипники тоже могут стать причиной межвиткового «коротыша».

Не исключена возможность заводского брака обмоток, и если электродвигатель перематывался в кустарной мастерской, то большая вероятность что «межвитняк» уже стучится в ваши двери.

Также неправильная эксплуатация и хранение электродвигателя может стать причиной попадания влаги внутрь двигателя отсыревшие обмотки тоже весьма распространенная причина межвиткового замыкания.

Как правило с таким замыканием электродвигатель уже не жилец, и работать будет весьма непродолжительное время. Я думаю хватит разбирать причины давайте перейдем к вопросу « как определить межвитковое замыкание».

Поиск межвиткового замыкания.

Определить межвитковое замыкание не слишком сложно, и для это есть несколько подручных способов.

Если при работе электромотора какая то часть статора нагрелась больше чем весь двигатель, то вам стоит подумать об остановке и точной диагностике.

Также помогут определить замыкание обыкновенные токовые клещи, меряем по очереди нагрузку на каждую фазу и если на одной из них она больше чем на других то это признак того что возможно есть межвитняк обмотки. Но следует учитывать что может быть перекос фаз на подстанции для того что бы убедится мереям вольтметром приходящие напряжение.

Читать еще:  Устройство гидроизоляции фундаментов и стен подвалов

Можно прозвонить обмотки тестером. Для этого прозваниваем каждую обмотку в отдельности и сверяем полученные результаты сопротивления. Этот способ может и не сработать если замыкают всего пару витков, то расхождение будет минимальным.

Не будет лишним брякнуть электродвигатель мегомметром в поиске замыкания на корпус, один щуп прикладываем к корпусу электродвигателя, а второй к по очереди к выходу обмоток в борно.

Если у вас остались еще сомнения, то вам придется разобрать электромотор. Сняв крышки и ротор, визуально рассматриваем обмотки. Вполне вероятно, что вы увидите сгоревшую часть.

Ну и самый точный способ проверки межвиткового замыкания это проверка при помощи трехфазного понижающего трансформатора (36-42 вольта) и шарика от подшипника.

На стартер разобранного электродвигателя подаем три фазы с понижающего трансформатора. С маленьким разгоном кидаем туда шарик, если шарик начинает бегать по кругу внутри статора то все в порядке. Если он, сделав пару оборотов прилип к одному месту, то значит там межвитковое замыкание.

Вместо шарика можно использовать пластинку от трансформаторного железа, прикладываем внутри статора к железу и в том месте где межвитковое она начнет дребезжать, а там где все в порядке пластина будет примагничиваться.

Обязательно используйте все выше перечисленные способы с заземленным электродвигателем и строго при помощи понижающего трансформатора.

Проверка шариком и пластинкой при напряжении в 380 вольт запрещена и очень опасна для вашей жизни.

Проверка статора и ротора электроинструментов на межвитковое замыкание

Чтобы проверить статор и ротор на межвитковое замыкание мультиметром, не потребуется много времени. Дольше придется разбирать двигатель. Болгарка, дрель, перфоратор – каждый инструмент можно отремонтировать, определив неисправность. Проверку лучше разбить на несколько основных этапов, и последовательно не спеша выполнять действия.

Разборка болгарки

Чтобы проверить замыкание на статоре и роторе, нужно разобрать двигатель бытового инструмента. Рассмотрим выполнение этой операции для поиска неисправности болгарки.

  • снимаем защитный кожух, открутив один винт на хомуте;
  • откручиваем 4 винта и отсоединяем редуктор с двигателем от рукоятки болгарки;
  • затем со стороны редуктора отвинчиваем 4 болта и отсоединяем редуктор, вместе с ротором двигателя;
  • статор у нас остался в корпусе подсоединенным к кнопке включения и питания.

Разобрав и отсоединив необходимые для проверки детали, переходим к их внешнему осмотру проверке на межвитковое замыкание.

Внешний осмотр

Обнаружить неисправность можно при неравномерном нагреве корпуса инструмента. Касаясь рукой, вы ощущаете перепад температуры в разных местах корпуса. В этом случае инструмент необходимо разобрать и проверить его тестером и другими способами.

При возникновении замыкания витков статора и поиска неисправностей, в первую очередь проводим осмотр витков и выводов. Как правило, при замыкании увеличивается сила тока, проходящая по обмоткам, и возникает их перегрев.

Возникает большее замыкание витков в обмотках статора и повреждается слой изоляции. Поэтому начинаем определение неисправностей проведением визуального осмотра. Если прожогов и поврежденной изоляции не обнаружено, то переходим к выполнению следующего этапа.

Возможно причина поломки в неисправности регулятора напряжения, возникающая при увеличении токов возбуждения. Для обнаружения проблемы проверяются щетки, они должны быть сточены равномерно и не иметь сколов и повреждений. Затем следует выполнить проверку с помощью лампочки и 2 аккумуляторов.

Применение мультиметра

Теперь надо проверить возможность обрыва обмоток статора. На шкале мультиметра выставляем переключатель в сектор замера сопротивления. Не зная величину измерения, выставляем максимальное значение величины для вашего прибора. Проверяем работоспособность тестера.

Касаемся щупами друг друга. Стрелка прибора должна показывать 0. Проводим работу, касаясь выводов обмоток. При показании бесконечного значения на шкале мультиметра обмотка неисправная и статор следует отдать в перемотку.

Проверяем возможность короткого замыкания на корпус. Такая неисправность вызовет снижение мощности болгарки, возможность поражения электротоком и увеличения температуры, при работе. Работа проводится по той же схеме. Включаем на шкале замер сопротивления.

Красный щуп располагаем на выводе обмотки, черный щуп крепим на корпус статора. При коротком замыкании обмотки на корпус на шкале тестера значение сопротивления будет меньшим, чем на исправной. Эта неисправность требует перемотки обмоток статора.

Настало время провести замеры и проверить, есть ли межвитковое замыкание обмотки статора. Для этого измеряется значение сопротивления на каждой обмотке.

Определяем нулевую точку обмоток, замерив сопротивление для каждой из них. При показании на приборе наименьшего сопротивления обмотки, ее следует менять.

Нестандартная проверка

Самым точным способом является проверка статора с помощью металлического шарика и понижающего трансформатора тока. Статор подключается к выводам трех фаз из трансформатора. Проверив правильность подключения, включаем нашу цепь с пониженным напряжением в сеть.

Внутрь статора вбрасываем шарик и наблюдаем за его поведением. Если он «прилип» к одной из обмоток – это значит, на ней произошло межвитковое замыкание. Шарик крутится по кругу – статор исправен. Довольно ненаучный, но действенный метод обнаружения межвиткового замыкания на статоре.

Неисправности ротора

В случае оптимального режима использования, ротор не изнашивается. Производятся регламентные работы с заменой щеток при их износе. Но со временем, при сильных нагрузках статор нагревается и образуется нагар. Самая частая механическая поломка – износ или перекос подшипников.

Работать болгарка будет, но при этом быстро изнашиваются пластины, и со временем двигатель ломается. Чтобы избежать поломок, необходимо проверять инструмент и поддерживать нормальные условия службы.

Влага при попадании на металл вызывает образование ржавчины. Повышается сила трения, силы тока требуется больше для работы. Происходит значительный нагрев групп контактов, припоя, появляется сильная искра.

Проверка обмоток двигателя

Электронный тестер роторов – это стандартный цифровой мультиметр. Прежде чем приступать к тестированию замыкания, следует проверить мультиметр и его готовность к работе. Переключатель выставляют на измерение сопротивления и касаются щупами друг друга. Прибор должен показать нули. Выставляют максимальную величину измерения и проводят проверку:

  • сначала следует проверить ротор на обрыв цепи. Прикасаясь черным щупом к контактному кольцу, красным нужно прозвонить обмотки. Стрелка прибора зашкалила, значит, обмотка имеет обрыв цепи витков. Ротор следует отдавать в перемотку;
  • замеряем сопротивление для определения возможности короткого замыкания на корпус. На контактное кольцо крепим черный щуп, красным следует прозвонить на замыкание корпус ротора. В случае низкого показания значения сопротивления и звукового сигнала, такой якорь необходимо отдавать в ремонт;
  • проведение прозвона на межвитковое замыкание витков ротора. Подкрепляем щупы на контактные кольца якоря. При значении на шкале прибора, от 1,5 Ом до 6 Ом, мы проверяли исправный прибор. Все другие значения на шкале означают неисправность мультиметра.

На этом проверка ротора закончена. Следует еще раз напомнить основные этапы определения неисправности. Прежде чем проверять, болгарку или любой другой прибор следует обесточить.

Перед проведением замеров, следует визуально осмотреть корпуса, изоляцию и отсутствия нагаров на статоре и роторе.

Необходимо очищать поверхности контактов от засоров пылью и грязью. Загрязнение приводит к увеличению тока при потере мощности двигателя.

При разборке инструмента в первый раз, записывайте все свои шаги. Это позволит иметь подсказку в следующий раз, избежать появления лишних деталей при сборке. При выходе щетки за край щеткодержателя менее 5 мм, такие щетки следует заменить.

Проверить межвитковое замыкание можно электронным тестером, то есть мультиметром.

9 основных неисправностей электродвигателя

В этом обзоре мы рассмотрим типичные неисправности трехфазных асинхронных электродвигателей и способы их предупреждения и устранения.

Электрические неисправности электродвигателя

Электрические неисправности двигателя всегда связаны с обмоткой.

  1. Межвитковое замыкание может возникнуть при ухудшении изоляции в пределах одной обмотки. Возможные причины: перегрев обмотки, некачественная изоляция, износ изоляции вследствие вибрации. Определить межвитковое замыкание бывает сложно. Основной метод диагностики – сравнение сопротивления и рабочего тока всех трех обмоток. Первые симптомы межвиткового замыкания – повышенный нагрев двигателя и падение момента на валу. При этом по одной из фаз ток больше, чем по двум другим.
  2. Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии должной электрической защиты может возникнуть короткое замыкание и пожар.
  3. Замыкание обмотки на корпус. При данной неисправности электродвигатель может продолжать работать, если неправильно выполнены заземление и защита от короткого замыкания. Однако в работе он будет смертельно опасен, так как его потенциал будет находиться под фазным напряжением.
  4. Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то двигатель резко теряет мощность и начинает перегреваться. При правильно выполненной защите двигатель отключится, поскольку ток по другим фазам будет повышен.

Для устранения большинства из этих поломок требуется перемотка двигателя.

Механические неисправности электродвигателя

Механические неисправности электродвигателя связаны с его конструкцией.

  1. Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В этом случае требуется замена подшипников, иначе неисправность приведет к перегреву и падению производительности двигателя.
  2. Проворачивание ротора на валу. Ротор может вращаться в магнитном поле статора, а вал будет неподвижен. Требуется механическая фиксация ротора на валу.
  3. Зацепление ротора за статор. Эта проблема связана с механической поломкой подшипников, их посадочных мест или корпуса двигателя. Кроме того, подобная неисправность приводит к повреждению обмотки статора. Практически не подлежит ремонту.
  4. Повреждение корпуса двигателя. Может происходить из-за ударов, повышенных нагрузок, неправильного крепления или низкого качества двигателя. Ремонт является трудоемким из-за трудностей соосной установки переднего и заднего подшипников.
  5. Проворачивание или повреждение крыльчатки обдува. Несмотря на то, что двигатель продолжит работать, он будет перегреваться, что существенно сократит срок его службы. Крыльчатку необходимо закрепить (для этого используется шпонка или стопорное кольцо) или заменить.

Аварийные ситуации при работе электродвигателя

Существуют неисправности, не связанные непосредственно с двигателем, но влияющие на его работу, характеристики и срок службы. Большинство этих неисправностей вызваны механической перегрузкой, увеличением тока, и, как следствие, перегревом обмоток и корпуса.

  1. Увеличение нагрузки на валу вследствие заклинивания привода либо приводимых механизмов.
  2. Перекос напряжения питания, который может быть вызван проблемами питающей сети либо внутренними проблемами привода.
  3. Пропадание фазы, которое может произойти на любом участке питания двигателя – от питающей трансформаторной подстанции до обмотки двигателя.
  4. Проблема с обдувом (охлаждением). Может возникнуть из-за повреждения крыльчатки двигателя при собственном охлаждении, из-за останова вентилятора внешнего принудительного охлаждения или вследствие значительного повышения температуры окружающей среды.

Способы защиты электродвигателя

Для защиты электродвигателя от внутренних и внешних неисправностей, а также для минимизации дальнейших трудозатрат по его ремонту применяют различные устройства.

1. Мотор-автоматы и тепловые реле

Мотор-автоматы (автоматы защиты двигателя) и тепловые реле используют для обнаружения превышения тока по одной или всем фазам двигателя. В случае превышения через некоторое время происходит отключение привода.

В отличие от мотор-автомата, у теплового реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать двигатель.

Минус теплового реле заключается в отсутствии защиты от короткого замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от короткого замыкания, которая мгновенно срабатывает и выключает двигатель при превышении тока уставки в 10-20 раз.

Данные устройства используются наиболее широко и при правильной установке и настройке способны с большой долей вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.

2. Электронные реле защиты двигателей

Данный вид защиты обеспечивает большой выбор различных защит. Основным элементом таких реле является микропроцессор, который анализирует мгновенные значения напряжения и тока и принимает решения на основе заданных настроек. Это может быть выдача сигнала на индикацию либо на отключение двигателя.

3. Термисторы и термореле

Когда по какой-то причине не сработала тепловая защита по перегрузке, последний рубеж обороны — термозащита. Внутрь обмотки устанавливается термочувствительный элемент (как правило, термистор или позистор), который меняет свое сопротивление в зависимости от температуры. При пересечении порога срабатывает соответствующая защита, и двигатель отключается.

Возможно применение более простых дискретных термореле (термоконтактов), которые размыкают контрольную или тепловую цепь, что приводит к аварийной остановке электродвигателя.

4. Преобразователи частоты

Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч. Кроме того, возможно ограничение момента и тока. В этом случае на двигатель будет подаваться напряжение с меньшим уровнем и частотой, если будет обнаружена перегрузка. При этом будет выдано соответствующее сообщение оператору, а двигатель может продолжать работать.

Также производители частотных преобразователей рекомендуют устанавливать защитный автомат на входе ПЧ, тепловое реле на выходе и термисторную защиту.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector