6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое переменный ток?

Переменный электрический ток

Переменный ток – или AC (Alternating Current). Обозначение (

Электрический ток называется переменным, если он в течение времени меняет свое направление и непрерывно изменяется по величине.

Переменный ток, который используется для подключения бытовых или производственных электрических приборов, изменяется по синусоидальному закону:

i = Imsin(2πft)

График переменного тока

  • i – мгновенное значение тока
  • Im – амплитудное или наибольшее значение тока
  • f – значение частоты переменного тока
  • t – время

Широко используется переменный ток благодаря тому, что электроэнергия переменного тока технически просто и экономно может быть преобразована из энергии более низкого напряжения в энергию более высокого напряжения и наоборот. Это свойство переменного тока позволяет передавать электроэнергию по проводам на большие расстояния.

Период переменного тока

Промышленный переменный электрический ток получают при помощи электрических генераторов, принцип работы которых основан на законе электромагнитной индукции. Вращение генератора осуществляется механическим двигателем, использующим тепловую, гидравлическую или атомную энергию.

Переменный однофазный электрический ток имеет следующие основные характеристики:

f – частота переменного тока определяет количество циклов или периодов в единицу времени. За единицу измерения частоты переменного тока принят Герц ( Гц ):

1гц = 10 3 кгц = 10 6 мгц

Τ – период – время одного полного изменения переменной величины.

Если в 1 секунду происходит 1 период Τ , то частота f = 1 Гц ( Герц ).

1c = 10 3 мс = 10 6 мкс = 10 12 нс

В Российской Федерации период Τ переменного тока принят равным 0,02 секунды,следовательно по формуле f = 1/Τ можно определить частоту переменного тока:

ω – угловая скорость

Помимо частоты f при изучении цепей переменного тока вводится понятие угловой скорости ω. Угловая скорость ω связана с частотой f следующим соотношением:

При частоте 50 Гц угловая скорость равна 314 рад/с ( 2 × 3,14 × 50 = 314 ).

Мгновенное значение ( i,u,e,p ) – значение величины в данный момент, мгновенное.

Максимальное или амплитудное значение ( Im,Um,Em,Pm ).

Эффективное значение тока – это величина переменного тока, равная такому току, который на сопротивлении R , создаёт тепловыделение равное данному переменному току, за тоже время t ( I,U,E,P ).

Получение синусоидальной кривой

В системе декартовых прямоугольных координат совмещены тригонометрический круг и кривая, отражающая изменение величины тригонометрической функции sinβ от величины угла β между осью 0х и радиусом-вектором r . Радиус-вектор r вращается против часовой стрелки. Повернем радиус-вектор на угол β и от конца вектора r проведем пунктиром прямую, параллельную оси 0х . От окружности (точка а ) по оси 0х отложим в масштабе отрезок. Из конца отрезка построим перпендикуляр до пересечения с пунктирной прямой. Получим точку с в пересечении перпендикуляра и пунктирной прямой.

Синусоида переменного тока

Аналогичное построение проведем, увеличивая угол β , пока радиус-вектор повернется на угол β = 360° , и получим точки аналогично точке с . Соединим точки плавной кривой, которая и будет отражать синусоидальный закон изменения величины переменного тока.

Понятие о фазе

Если две переменные величины одновременно проходят свои нулевые и максимальные значения, то они совпадают по фазе.

Если две переменные величины не одновременно проходят свои нулевые и максимальные значения, то они не совпадают по фазе.

В радиотехнике используются понятия:

1. Активное сопротивление ( Ra )

2. Индуктивное сопротивление ( XL – реактивное сопротивление )

3. Ёмкостное сопротивление ( XC – реактивное сопротивление )

Понятие об активном сопротивлении

Если по проводнику протекает ток, то вследствие явления самоиндукции, электроны распространяются не равномерно по сечению проводника, вследствие чего растёт сопротивление проводника.

Явление неравномерного распространения зарядов по сечению проводника называется – поверхностный эффект. Чем больше частота, тем больше сопротивление.

Что такое переменный ток?

Большинство потребителей электрической энергии работает на переменном токе. В настоящее время почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Это объясняется преимуществом производства и распределения этой энергии. Переменный ток получают на электростанциях, преобразуя с помощью генераторов механическую энергию в электрическую. Основное преимущество переменного тока по сравнению с постоянным заключается в возможности с помощью трансформаторов повышать или понижать напряжение, с минимальными потерями передавать электрическую энергию на большие расстояния. Кроме того, генераторы и двигатели переменного тока более просты по устройству, надежней в работе и проще в эксплуатации по сравнению с машинами постоянного тока.

Переменным током называется электрический ток, сила которого каким-либо образом меняется со временем. Обычный способ получения переменного тока заключается в том, что при вращении рамки в однородном магнитном поле в ней возникает электродвижущая сила, которая по закону Фарадея равна

Если рамка вращается в магнитном поле с частотой , то поток вектора магнитной индукции через поверхность, ограниченную контуром рамки, меняется со временем по закону:

где – максимальное значение потока вектора индукции через плоскость контура. Возникающая при этом электродвижущая сила равна

Величина называется амплитудой электродвижущей силы и представляет ее наибольшее значение.

Электродвижущая сила максимальна, когда угол . В этом положении поток равен нулю, а скорость изменения магнитного потока максимальна. Когда , поток максимален, а электродвижущая сила равна нулю. За один период электродвижущая сила дважды меняет знак. Периодически действующая электродвижущая сила вызывает в замкнутом проводнике переменный ток, также изменяющийся по периодическому закону.

Гармонически изменяющаяся электродвижущая сила – это идеализация. Такой закон изменения электродвижущей силы получается в том случае, когда магнитное поле однородно, а рамка вращается равномерно. Если хотя бы одно из этих условий нарушается, в контуре возникает электродвижущая сила, изменяющаяся по более сложному закону. Однако при равномерном вращении изменение электродвижущей силы происходит всегда по периодическому закону. Теория синусоидальных токов наиболее проста и хорошо разработана. Преимущество этого подхода подтверждается и тем, что все технические генераторы переменного тока имеют электродвижущую силу, изменяющуюся по синусоидальному закону. На этом основании при изучении переменных токов предпочтение отдается теории синусоидальных токов.

Постоянный и переменный ток. Значение трансформаторов.

Без электричества и электрических приборов уже попросту невозможно представить современный мир. Всё к чему мы так привыкли: освещение, бытовые приборы, компьютеры, телевизоры – так или иначе связано с электропитанием. Однако, стоит отметить, что одни приборы работают от переменного тока, а другие – питаются от источников постоянного тока.

Постоянным током называют ток, который в течение некоторого промежутка времени не меняет своего направления и величины. Таким образом, постоянный ток имеет постоянное напряжение и силу тока.

Постоянный ток используется:

  • Для передачи электроэнергии на высоковольтных линиях электропередач (например, 500 кВ). Это связано с тем, что если применять переменный ток того же напряжения, с учетом амплитудных значений напряжений и их перепада, то такие напряжения могут превышать величину напряжения постоянного тока в несколько раз. Использование переменного тока в высоковольтных проводах приведет к дополнительным тратам на изоляционные материалы, что значительно увеличит стоимость ЛЭП.
  • В контактных сетях электрического транспорта – троллейбусов и трамваев – до 3000 В.
  • В сетях до 1000 В для электродвигателей с тяжелыми условиями пуска – прокатные станы, центрифуги и прочее.
  • Для электросетей до 500 В, используемых для грузоподъемных механизмов – подъемных электрических кранов.
  • В качестве источника питания различных переносных бытовых приборов – фонарики, аудиоприёмники, диагностические приборы, мультиметры, мобильные телефоны.


Поток электронов идет строго по прямой линии, никак не колеблясь и не изменяясь. У такого тока нет частоты, потому что нет колебаний. Поток электронов (каждый электрон) двигается строго в одном направлении от «минуса» к «плюсу». Поэтому в батарейках так важно соблюдать полярность. Если подключите два «минуса» или два «плюса», ток просто не потечет.

Стоит отметить, что в условиях тяжелого пуска – то есть если пусковой момент высок, а требуется плавное регулирование скорости, тягового усилия и пускового момента – применяются двигатели постоянного тока. Таковыми, например, являются двигатели электротранспорта, электрических мельниц, центрифуг.

Постоянный ток, чаще всего можно встретить в различных элементах питания – аккумуляторах и батарейках. Скажем, в автомобилях используется аккумуляторы постоянного тока напряжением 12 В; для строительной техники, например, экскаваторов, бульдозеров используются аккумуляторы, имеющие напряжение в 24 В. Аккумулятор мобильного телефона автора статьи – постоянного тока напряжением 3,7 В.

Каждый источник постоянного тока имеет две клеммы или разъема, обозначаемые как плюс (+) и минус (-). Считается, что постоянный ток движется от плюсовой клеммы (+) к минусовой (-), при этом, между ними можно подключить оборудование (например лампочку).

На самом деле, процессы, протекающие в электросети постоянного тока происходят очень быстро, и изобразить их в реальном времени не представляется возможным.

Схематично, действие постоянного тока в простейшей сети, многократно замедленное. Оно дает наиболее полное представление о процессах, происходящих в сети постоянного тока.

Переменный ток – это ток, который за определенный промежуток времени, меняет свое направление. Частота смены направления измеряется в герцах. 1 герц (Гц) означает, что за одну секунду совершен полный цикл смены направления (туда-обратно). В Европейских странах, в том числе и в России, в бытовых электросетях используется однофазный переменный ток, имеющий частоту 50 Гц, то есть меняющий своё направление 100 раз в секунду.

Таким образом, за одну секунду через нить лампы, горящей на обычном письменном столе, ток проходит 50 раз в одном направлении и пятьдесят раз в обратном.

В американских и канадских электросетях используется переменный ток с частотой в 60 Гц, вместо общепринятого переменного тока с частотой в 50 Гц.

Также, как источник постоянного тока имеет две клеммы – плюсовую и минусовую, источник однофазного переменного тока имеет две клеммы или разъема, называемые «фаза» и «ноль».

Кстати, переменный ток в домашней розетке называется однофазным, как раз из-за наличия одного разъема «фаза». Величина напряжения переменного однофазного тока равна 220 В.

Переменный ток действует следующим образом: переменный ток начинает движение из «фазы» в сторону «нуля», доходит до него, останавливается, и затем, движется в обратном направлении.

Особенностями переменного однофазного тока являются:

  • Среднее значение силы переменного тока за период равняется нулю.
  • Переменный ток за период меняет не только направление движения, но и свою величину.
  • Действующее значение силы переменного тока – это сила такого постоянного тока, при которой средняя мощность, которая выделяется в проводнике в цепи переменного тока, равна мощности, которая выделяется в том же проводнике в цепи постоянного тока. Когда говорят о токах и напряжении в сети переменного тока, имеют в виду их действующие значения.


Поток электронов постоянно колеблется с определенной частой (в 50 герц), образуя синусоиду (волнистую линию).
Поток электронов двигается как угодно, отдельные электроны в потоке тоже движутся хаотично. Для переменного тока не требуется соблюдать полярность.

Действующее напряжение сети переменного тока в обыкновенной бытовой розетке составляет напряжение в сети 220 вольт.

Широкое применение переменного тока в технике и для бытовых нужд вызвано тем, что, переменный ток легко трансформируется. Напряжение в сети переменного тока может быть легко повышено или понижено при помощи специального устройства –трансформатора.

Читать еще:  Влияние реактивной мощности на экономические и технические характеристики сетей

Трансформатор — электромагнитное устройство, которое преобразует посредством электромагнитной индукции переменный ток таким образом, что напряжение в сети уменьшается либо увеличивается в несколько раз без изменения частоты, и практически без потери мощности.

Для преобразования напряжения переменного тока в сторону уменьшения (например, силовые трансформаторы с 10 000 В городских сетей до 220 В домашней сети) применяются понижающие трансформаторы. Для преобразования напряжения сетей в сторону повышения – повышающие трансформаторы.

Переменный электрический ток

Переменный ток (AC — Alternating Current) — электрический ток, меняющий свою величину и направление с течением времени.

Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC. Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.

DC — Direct Current — постоянный ток, не меняющий своей величины и направления.

В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.

При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.

Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.
Величина тока будет равна квадратному корню из суммы квадратов двух величин — значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.

Термины AC и DC применимы как для тока, так и для напряжения.

Параметры переменного тока и напряжения

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота f — величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz)

f = 1 /T

Циклическая частота ω — угловая частота, равная количеству периодов за секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ — величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение — величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

i = i(t); u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = I ampsin(ωt); u = U ampsin(ωt)

С учётом начальной фазы:

i = I ampsin(ωt + ψ); u = U ampsin(ωt + ψ)

Здесь I amp и U amp — амплитудные значения тока и напряжения.

Амплитудное значение — максимальное по модулю мгновенное значение за период.

I amp = max|i(t)|; U amp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) — максимальное отклонение от нулевого значения.

Среднее значение (avg) — определяется как среднеарифметическое всех мгновенных значений за период T.

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение — среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой I amp (U amp) среднеквадратичное значение определится из расчёта:

Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

Коэффициент амплитуды и коэффициент формы

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды — отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы — отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1

Замечания и предложения принимаются и приветствуются!

Что такое переменный ток?

Наш прибор показывает так называемое действующее значение напряжения ( или тока). Для простоты понимания можете считать его усредненным. А как же в действительности будет изменяться напряжение в сети? В действительности напряжение будет меняться от нуля до своего максимального значения величиной 310В. В какой-то выбранный момент времени напряжение будет иметь свое значение. Поэтому, например, если (вероятность этого, конечно, мала)вы включите свет в момент напряжения в сети 310В, будьте уверены — вам придется лампочку поменять. А в телевизоре, например, может перегореть предохранитель. Хотя к современным ТВ это мало относится.

Те, кто хочет узнать кое-что поподробнее, могут почитать дальше.

Частота f — это число колебаний в секунду. Теперь давайте подсчитаем. Если одно колебание у нас происходит за время периода Т, которое равно 0,02сек, то тогда за одну секунду у нас произойдет 50колебаний(1/0,02=50). А одно колебание представляет собой движение электронов сначала в одну сторону, потом в другую(два полупериода). Т.е. за 1сек электроны будут двигаться поочередно то в одну то в другую сторону 50раз. Вот вам и наша частота тока в сети, которая равна 50Гц(Герц).

Амплитуда — наибольшая величина тока(Imах) или напряжения(Umах=310В) за время периода Т. Очевидно, что за один период синусоидальный ток и напряжение достигают два раза своей максимальной величины.

Мгновенное значение — мы уже знаем, что переменный ток непрерывно изменяет свое направление и величину. Величина напряжения в данный момент называется мгновенным значением напряжения. Это же относится и к величине тока.

В качестве иллюстрации на рис.6 указаны несколько мгновенных значений(200В, 300В, 310В, — 150В, — 310В, — 100В) величины напряжения в электрической цепи в течение одного периода. Видно, что в начальный момент напряжение равно равно нулю, после чего постепенно нарастает до 100В, 200В и т.д. Достигнув максимального значения 310В, напряжение начинает постепенно уменьшаться до нуля, после чего изменяет свое направление и снова возрастает, достигая величины минус 310В(- 310В) и т.д. Если кто-то с трудом может себе представить, что такое смена направления, может представить себе, что плюс и минус в розетке меняются местами — т.е. если мы условно примем ноль(землю) за минус, а фазу за плюс. И происходит это 50раз в секунду. Ну, вот где-то примерно так.
Действующее значение. Итак, зададимся вопросом — а какому постоянному напряжению равно по своему действию наше переменное напряжение в сети, показанное на рис.6? Теория и практика показывают , что оно равняется постоянному напряжению величиной 220В — рис.7. Взять это на веру не так уж и сложно, поскольку несложно увидеть, что рассматриваемое в течение одного периода напряжение имеет значение 310В только в два момента, а в остальное время оно меньше. Так как наше синусоидальное напряжение изменяется непрерывно, то целесообразно было ввести такое понятие как — действующее напряжение. Ведь именно по какому-либо конкретному значению напряжения(или тока), а не его меняющемуся значению мы можем «прикинуть» его силу. Так вот, под действующим значением переменного тока(ну или напряжения)мы понимаем такой постоянный ток, который за то же самое время совершает ту же работу(или выделяет такое же количество тепла), что и данный переменный ток.

Поэтому, наша обыкновенная лампочка(или, например, обогревательный прибор)будет одинаково работать как при переменном напряжении, изменяющегося от нуля до 310В, так и при постоянном напряжении 220В. А 12-вольтовая лампочка будет одинаково светить как от источника переменного напряжения величиной 12В(изменяющегося от нуля до 16,8В), так и от любой батарейки или аккумулятора(а они являются, как известно, источниками постоянного напряжения). Итак, запомните.

1)электрический ток(напряжение), который периодически изменяет свое направление и величину, называется переменным током. Любой переменный ток характеризуется в основном своей частотой, амплитудой и действующим значением;

2)приборы, предназначенные для измерения переменного тока, показывают его действующее значение;

3)напряжение измеряют вольтметром(или комбинированным прибором — авометром), ток — амперметром(или комбинированным прибором — авометром). Также ток можно измерять так называемыми токовыми клещами. Служат они для бесконтактного измерения тока — рабочая часть прибора образует кольцо вокруг измеряемого провода и по величине электромагнитного поля, действующего на рабочую часть прибора, выводится информация на его небольшой дисплей о величине протекающего тока. Авометр — это комбинированный прибор(его в простонародье еще называют просто тестером), который полностью в своем техпаспорте называется ампервольтомметром и служит для измерения и тока, и напряжения, и сопротивлений. А цифровые модели могут измерять и частоту напряжения(тока), и емкости конденсаторов и другие вещи — это уж как задумает разработчик;

4)зная значение(действующее) переменного напряжения, всегда можно узнать его максимальное значение(не забудьте — оно меняется по синусоидальному закону). А связь здесь такая —

U max = 1,4 U , где U — действующее значение, а U max — максимальное значение(амплитуда). На этом пока всё!

§47. Основные параметры переменного тока

При подключении к источнику переменного тока с синусоидально изменяющейся э. д. с. электрических цепей с линейными сопротивлениями в них будут действовать синусоидально изменяющиеся напряжения и проходить синусоидально изменяющиеся токи. Переменные токи, э. д. с. и напряжения характеризуются четырьмя основными параметрами: периодом, частотой, амплитудой и действующим значением.

Период.

Промежуток времени Т, в течение которого э. д. с, напряжение и или ток i (рис. 169, а) совершают полный цикл изменений, называется периодом. Чем быстрее вращается виток или ротор генератора переменного тока, тем меньше период изменения э. д. с. или тока.

Читать еще:  Монтаж фитингов

Частота.

Число полных периодов изменения э. д. с, напряжения или тока в 1 с называется частотой,

f = 1 / T

Она измеряется в герцах (Гц), т. е. числом периодов в секунду. Чем больше частота, тем меньше период изменения тока, напряжения или э. д. с. (рис. 169,б). В Советском Союзе все электрические станции переменного тока вырабатывают ток, изменяющийся с частотой 50 Гц, т. е. 50 периодов в секунду. В автоматике и радиотехнике применяют электрические токи и более высоких частот. Такие частоты измеряются в килогерцах (1 кГц=10 3 Гц) и мегагерцах (1 МГц=10 6 Гц).

Рис. 169. Кривые изменения синусоидального переменного тока при различной частоте

Из рис. 169,а следует, что в течение времени одного периода Т фаза ωt тока (э. д. с. или напряжения) изменяется на угол 360°, или 2π радиан. Поэтому

ω = 2π/T = 2πf

Эту величину называют угловой частотой переменного тока, она имеет размерность рад/с.

Амплитуда.

Наибольшее значение переменного тока (переменных э. д. с. и напряжения) называют амплитудным значением, или амплитудой. В рассмотренном нами простейшем генераторе переменного тока (см. рис. 168, а) э. д. с. е дважды достигает амплитудного значения: во время первого полуоборота +Ет (направлена от начала витка к его концу), а во время второго полуоборота — Ет (направлена от конца витка к его началу).

Точно так же за один период ток i 2 раза достигает амплитудного значения: Iт и — Iт. Амплитудное значение тока, напряжения и э. д. с. в формулах обозначают соответствующими буквами с индексами «т», т. е. Iт Uт, Ет и др.

Действующее значение.

Ток, напряжение и э. д. с, действующие в электрической цепи в каждый отдельный момент времени, определяются так называемыми мгновенными значениями. Эти значения принято обозначать строчными буквами i, и, е. Однако судить о переменных э. д. с, токе или напряжении по их мгновенным значениям неудобно, так как эти значения непрерывно меняются.

Поэтому оценивать способность переменного тока совершать механическую работу или создавать тепло принято по действующему его значению. Под действующим значением переменного тока понимают силу такого постоянного тока (прямая 2 на рис. 169,а), который, проходя по проводнику в течение некоторого времени (например, в течение одного периода или 1 с), выделит в нем такое же количество тепла (произведет такую же механическую работу), как и данный переменный ток (кривая 1).

Действующие значения тока, напряжения и э. д. с. обозначают соответственно I, U, Е.

При синусоидальном переменном токе:

I = Iт / √2 = 0,707 Iт

Если известно действующее значение тока I, то его амплитудное значение:

Iт = √2 I = 1,41 I

Аналогично для синусоидальных напряжений и э. д. с.:

U / Uт = Е1 / Ет = 1 / √2 = 0,707

На практике для характеристики параметров переменного тока используют, главным образом, действующие значения тока, напряжения и э. д. с. Например, когда говорят, что напряжение в осветительной сети переменного тока составляет 220 В или что по цепи проходит ток 100 А, то это значит, что в данной сети действующее значение напряжения равно 220 В или что действующее значение тока, проходящего по данной цепи, равно 100 А.

Электрическая энергия и механическая работа, создаваемые переменным током в различных электрических устройствах, пропорциональны действующим значениям тока и напряжения. Большая часть существующих приборов для измерения переменного тока измеряет действующие значения тока, напряжения и э. д. с.

Чем отличается постоянный ток от переменного

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный. Чем отличается переменный ток от постоянного? Характеристики постоянного тока.

Постоянный ток

Direct Current или DC так по-английски обозначают электрический ток который на протяжении любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос. Важная особенность постоянного электрического тока — это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках. Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств.

Переменный ток

(Alternating Current) или АС английская аббревиатура обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «

». Если говорить о переменном токе простыми словами , то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное. На рисунке обратное направление – это область графика ниже нуля.

Теперь давай разберемся, что такое частота. Частота это — период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние. Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока. Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.

Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель” . Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

что такое диод и как работает диодный мост , ты можешь узнать в моих следующих статьях.

Какой ток опаснее, постоянный или переменный?

Опасность переменного тока низкой (сетевой) частоты

Когда между Николой Тесла и Томасом Эдисоном шла «война токов», одним из главных аргументов Эдисона против систем переменного тока Тесла был как раз тот довод, что переменный ток смертельно опасен для человека. И это действительно так — переменный ток низкой частоты (50-60 Гц) уже при напряжении 48 вольт способен нанести существенный вред здоровью человека вплоть до остановки сердца. Постоянный же ток при тех же 48 вольтах средний человек даже не почувствует.

Но для передачи электрических мощностей на большие расстояния сегодня используется именно низкочастотный переменный ток, он легко преобразуется трансформаторами, приводит к меньшим потерям энергии, подходит для питания электродвигателей. Поэтому ток из розетки на самом деле смертельно опасен. Этот факт нельзя недооценивать.

Безопасность постоянного тока при низком напряжении

Постоянный же ток безопасен лишь при низком напряжении. Так, например, во время всем известной терапевтической процедуры электрофорез применяется постоянный ток с напряжением до 60 вольт для обеспечения эффективного всасывания лекарства в живые ткани человеческого организма. При этом ток через небольшой участок тела не превышает 50 мА. Человек лишь испытывает легкое покалывание но не шок.

А вот если бы ток на электродах прибора оказался переменным низкочастотным (как в розетке), то это причинило бы вред здоровью, сердечный ритм пациента мог бы быть нарушен. Таким образом о постоянном токе можно с натяжкой сказать, что при низком напряжении (менее 48 вольт) он безопаснее переменного.

Опасность постоянного тока при высоком напряжении

Конечно, с постоянным током не все так однозначно как может показаться. Разряд конденсатора — это ведь по сути — тоже постоянный ток. Однако известны случаи, когда разряд конденсатора через руки человека при напряжении на электродах в 500 вольт приводил к нарушению сердечного ритма, так что пациенту требовалась срочная госпитализация. Поэтому и постоянный ток бывает смертельно опасным. Все зависит от напряжения. Постоянный ток при напряжении более 100 вольт — опасен.

Безопасность переменного тока при высокой частоте

В то же самое время переменный ток с напряжением даже в тысячи вольт может оказаться безопасным, но лишь при условии что его частота превышает 20000 Гц.

Никола Тесла пропускал через собственное тело (в целях демонстрации) высокочастотный ток при напряжении более 100000 вольт и оставался жив и невредим.

Но такое чудо стало возможным только благодаря тому, что частота тока превышала 100 кГц, и основной ток шел по поверхности тела, не проникая во внутренние органы. Поэтому высокочастотный ток безопаснее низкочастотного переменного (более 48 вольт) и постоянного (более 100 вольт).

На самом деле все относительно

Вывод здесь может звучать так. В пределах 100 вольт при одной и той же величине действующего напряжения переменный низкочастотный ток (50-60 Гц) гораздо опаснее постоянного тока при том же действующем напряжении. Но при напряжениях более высоких чем 100 вольт на безопасность можно надеяться лишь при условиях что ток является высокочастотным — частотой 20 и более килогерц. Если же при напряжении более 100 вольт ток будет постоянным или низкочастотным переменным (50-60 Гц) — это гораздо опаснее. А что вы думаете по этому поводу?

Переменный ток

Переменный ток – это вид электрического тока, который отличается от постоянного тем, что он может менять направление и модуль. Грубо говоря, это означает, что мощность переменного тока может меняться, и обычные формулы расчета мощности, используемые для постоянного тока, в случае с переменным током могут быть неприменимы. Именно из-за этого постоянный ток изображается в виде прямой, а переменный – в виде кривой, точнее, даже, синусоиды. Изменения величины и направления переменного тока являются периодическими, то есть повторяются через равные промежутки времени.

Читать еще:  Как конопатить сруб своими руками

В отличие от постоянного тока, переменный обладает рядом дополнительных значений:

  • Период – время совершения полного цикла значений переменного тока; отсюда же производные – полупериод (половина цикла) и частота (сколько циклов проходит за определенный промежуток времени);
  • Амплитуда (амплитудное значение) – максимальное значение переменного тока;
  • Мгновенное значение – значение тока на данный момент времени.

Переменный ток формируется с помощью магнитного поля. В самых простых и ранних экспериментах это была медная рамка на оси, которая при помощи ременной передачи вращалась в поле магнита. Когда говорят о переменном токе, нередко имеют в виду ток в трехфазных сетях, очень часто применяемых на производстве и при передаче электричества на большие расстояния. Если не вдаваться в детали, это связано с тем, что трехфазная система распределения и передачи электричества позволяет минимизировать затраты энергии и уменьшить потребности в материалах. Упоминая переменный ток в данном контексте, мы должны помнить, что речь идет не о хаотической направленности электроэнергии, а о ее направлении по определенным фазам в соответствии с так называемым «гармоническим законом». Чтобы лучше понять, о чем идет речь, можно сказать, что это своеобразное «дозирование» подачи электричества с определенной периодичностью. Вообще, переменный ток более распространен. В том же случае, когда используемое устройство потребляет постоянный ток, мы можем получить его с помощью выпрямителя. Это устройство позволяет стабилизировать направление и напряжение тока. В качестве примера можно привести выпрямители, используемые в электровозах. Переменный ток позволяет менять напряжение в электросетях, в зависимости от имеющихся потребностей, с помощью трансформаторов. Кроме того, польза переменного тока заключается также в том, что электродвигатели, работающие на переменном токе («асинхронные») эффективнее и надежнее, чем двигатели постоянного тока – ведь КПД асинхронных двигателей достигает 90 процентов.

В зависимости от страны и отрасли, стандарты частоты переменного тока могут меняться. Основные значения – от 16,6 Гц в железнодорожных сетях Центральной Европы до 500 Гц в морском флоте.

Вся информация, размещенная на сайте, носит информационный характер и не является публичной офертой, определяемой положениями Статьи 437 (2) ГК РФ. Производитель оставляет за собой право изменять характеристики товара, его внешний вид и комплектность без предварительного уведомления продавца.

Постоянный и переменный ток: преимущества и недостатки

Какой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?

Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.

Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями. Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции. Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно. Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.

Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.

I1 = P/U1 = 1000 кВт/10 кВ = 100 А.

I2 = P/U2 = 1000 кВт/100 кВ = 10 А.

Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.

Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.

Pпот1 = I1 2 ∙R = 100 2 ∙10 = 100000 Вт = 100 кВт.

Pпот2 = I2 2 ∙R = 10 2 ∙10 = 1000 Вт = 1 кВт.

Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором. А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.

Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.

Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.

Преимущества переменного тока

Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.

Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.

Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.

Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока. Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин. Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.

Недостатки постоянного тока

Из выше изложенного следуют такие недостатки.

  1. Сложность повышения и снижения напряжения, то есть преобразования электроэнергии постоянного тока. В первую очередь это вызвано сложность конструкций преобразователей. Поскольку необходимы мощные полупроводниковые ключи, рассчитанные на высокое напряжение. Отсутствие которых приводит к большому числу последовательно и параллельно соединенных полупроводниковых приборов. В результате снижается надежность всего преобразователя, увеличивается стоимость и возрастают потери мощности.
  2. Электрические машины имеют более сложную конструкцию, поэтому менее надежны и более затратные, как в производстве, так и в эксплуатации.
  3. Сложности в развязке высокого и низкого напряжений.

Недостатки переменного тока

  1. Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его. В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.

Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.

  1. Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.

Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.

Преимущества постоянного тока

  1. Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.
  2. Постоянный ток в отличие от переменного протекает по всему сечению проводника.

Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.

К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.

Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя. Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения. Такие инверторы должны получать питание от источника постоянного напряжения.

Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.

Выводы: постоянный или переменный ток

Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества. Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции. К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.

Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector