5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет оснований и фундаментов правила вычислений

Расчет оснований и фундаментов: правила вычислений

Перед началом строительства дома по характеристикам грунта выполняют необходимый расчет оснований фундаментов.

Для определения прочности самого фундамента необходимо также выполнить соответствующие вычисления.

Ленточный фундамент виды и формы.

Поскольку имеется несколько типов несущего основания и достаточно много видов естественных грунтов, то приведенные примеры расчета оснований и фундаментов не охватывают всего этого многообразия. Если не требуется дополнительных инженерных работ по укреплению почвы, сооружают фундаменты на естественном основании, для которых существуют специальные методы вычисления.

Характеристика естественных оснований

Схема ленточного фундамента.

В распоряжение строителя природа предоставляет грунт как естественное основание. Тип фундамента определяет дополнительно ряд факторов: геологическое строение, глубина залегания подземных вод, глубина промерзания и др. Характер нагрузок также оказывает влияние, но для частного домовладения надо ориентироваться на постоянную нагрузку. В то же время нельзя исключить вероятность того, что сосед начнет рядом строить дом на забивных сваях.

Естественным фундаментом являются скальные грунты (гранит, известняк, кварциты и др.), которые являются водонепроницаемыми и надежными для любых сооружений. Аналогичные характеристики присущи и крупноблочным грунтам, которые образовались из скальных пород в результате их разрушения. Это щебень, гравий, галька. Они состоят из частиц, размеры которых превышают 2 мм. Их надежность существенно зависит от присутствия подземных вод.

Горные породы, измельченные до размеров 0,1-2 мм, называют песками. Пески с размером частиц 0,25-2 мм практически не вспучиваются в зимних условиях и поэтому не воздействуют на фундамент. Надежность песчаного основания зависит от мощности слоя песка и от воздействия на него грунтовых вод.

Схема заливки ленточного фундамента.

В глинистых грунтах содержатся частицы, размеры которых не превышают 0,005 мм. По содержанию глины их делят на:

  • супесь: содержание глины от 3 до 10%;
  • суглинок: содержание глины от 10 до 30%;
  • лессы: являются пылеватым суглинком.

Наиболее прочным основанием является глина. На таком основании, если глина сухая, можно сооружать массивные здания.

Несущая способность всех перечисленных видов естественных оснований сильно зависит от влажности. А влажные лессовые грунты еще и уплотняются под воздействием веса сооружения, сильно проседая.

В качестве оснований непригодны некоторые супеси, способные от избытка влаги превратиться в плывуны, а также растительный грунт, торф, ил и насыпные грунты. На таких почвах строительство возможно после их предварительного уплотнения.

Расчет основания по несущей способности

Изображение 1. Механика грунтов.

Под несущей способностью грунта следует понимать предельную нагрузку, которую он может выдержать без разрушения. На Изображении 1 показаны случаи, требующие выполнения расчета основания по несущей способности, которая обеспечит их собственную устойчивость и не допустит смещения фундамента основания по его подошве.

Необходимо перечислить случаи, показанные на Изображении 1, и определиться с теми, которые могут относиться к частному домостроению.

а) На сооружение действует горизонтальная сила. Такой расчет может потребоваться, если на подворье будут устанавливать вышку для генератора, работающего под действием силы ветра.

б) Предполагает расчет фундамента при наличии подпорной стены, на которую могут действовать горизонтальные силы, возникающие от собственного веса грунта.

в), г) Сооружение находится на откосе или близко к его краю.

д) Основанием является глинистый грунт, степень влажности которого S?= 0,5. На него действует вес дома. Это реально возможные ситуации.

е) Рассчитывают несущую способность для определения, насколько устойчив естественный склон.

Ленточный монолитный фундамент.

Кроме указанных случаев такой расчет фундаментов необходим, если дом построен на скальных грунтах или на фундамент могут действовать выталкивающие силы.

Далее обозначения в формулах такие, как и в нормативной строительной документации.

Чтобы несущая способность грунта обеспечивала надежность построенного на нем сооружения, необходимо проверить условие (1):

где F – нагрузка от всего сооружения с учетом всех систем жизнеобеспечения, передаваемая на основание фундаментом, кг; Fu – противодействующая сила основания, кг; ?c – коэффициент, зависящий от типа грунта (см. таблицу №1); ?n – коэффициент надежности, устанавливается в зависимости от класса сооружения: ?n=1,2; 1,15; 1,1 для сооружений I, II, и III классов, соответственно.

Вид ?c Несущая способность [?], кг/см? плотный средней плотности Песок крупный 1,0 6 5 Песок среднего размера 5 4 Супесь (сухая) 0,85 3 2,5 Супесь, влажная (пластичная) 2,5 2 Суглинок (сухой) 3 2 Суглинок, влажный (пластичный) 3 1 Глина (сухая) 0,9 6 2.5 Глина, влажная (пластичная) 4 1

Примеры расчета оснований и фундаментов

Схема основных видов фундамента.

В качестве примера можно рассмотреть случай под буквой «д»: фундамент, основание которого опирается на глинистый грунт. Для определения его противодействия, Fu, необходимо знать несущую способность грунтов (см. Таблицу 1) и площадь Sф, на которую опирается фундамент сооружения. К примеру, его ширина d = 0,5 м, а здание имеет размеры 8?10 м.

Внутри здания, посредине, имеется одна несущая стена. Обычно фундамент на естественном основании имеет прямоугольное сечение. Определение площади подошвы необходимо выполнять исходя из положения, что его размеры в сечении должны быть одинаковыми. Тогда значение площади будет равно:

Sф = (10?2+7?3)?0,5=20,5 м? =20,5?104 см?.

Несущая способность сухой глины средней плотности составляет 2,5 кг/см? (см. Таблицу 1). По величине подошвы фундамента и несущей способности грунта можно определить противодействующую силу.

Fu=[?]?Sф = 2,5?20,5?104 =51,25?104 кг=512,5 т.

Следует определить вес здания III класса (?n=1,1) для глины (?c=0,9):

F??c?Fu/?n= 0,9?512,5 /1,1=419 т.

Следовательно, если вес сооружения F будет меньше 419 т, то несущая способность грунта обеспечит его надежность. Иначе придется прибегнуть к увеличению площади подошвы фундамента, сделав его сечение не прямоугольным, а трапецеидальным. Увеличение одной только площади подошвы существенно сокращает количество материала.

Расчет по несущей способности для сооружений, расположенных на откосе или недалеко от него, намного сложнее.

Расчет фундамента на естественном основании по деформациям

Строения в процессе эксплуатации деформируются, и причиной этому могут быть вертикальные деформации оснований, на которых они построены. Такие деформации разделяют на осадки и просадки.

Схема внецентренно нагруженного свайного фундамента.

Коренное изменение сложившегося строения грунта называют просадкой. Причиной просадки может быть уплотнение почвы при замачивании. Рыхлый грунт может уплотниться при сотрясении. Иногда он начинает выпирать из-под подошвы фундамента. Таких изменений фундаментов по деформациям допускать нельзя. Вероятность их появления необходимо установить до начала строительства.

Если происходит уплотнение прочных грунтов из-за веса строения, в результате чего происходит осадка фундамента, такую деформацию оснований называют осадкой. Как правило, в результате осадки в элементах здания трещины не появляются. Если грунт оседает по-разному под каждой из частей здания, это и может явиться причиной появления трещин в отдельных элементах его конструкции.

Причиной неравномерности осадки грунта могут быть:

  • разница плотностей и как следствие, неодинаковая их сжимаемость;
  • разное расширение его слоев в результате сезонных промерзаний и оттаиваний;
  • неодинаковая мощность пластов;
  • различные нагрузки на грунт со стороны строения, что приводит его к разным напряженным состояниям.

Существуют две причины, из-за которых необходимо выполнять расчет оснований по деформациям. Одной из них являются близко стоящие от строительства сооружения, существенно отличающиеся по весу.

Схема не симметричного свайного фундамента с определением смещенного центра тяжести.

Второй причиной осадки фундаментов могут быть слабые грунты. Это насыпные почвы, рыхлые пески в глинистых типах, находящихся в текучем состоянии, грунты с большим содержанием органических остатков. В таких видах возможна деформация фундамента.

Расчет оснований состоит в проверке выполнения неравенства:

где S – расчетная абсолютная величина осадки; f – предельно допустимая осадка.

Предельные осадки, при которых не выполняется условие (2) могут быть причиной для формирования искусственного основания.

Значение S определяют путем проведения по установленной методике испытаний на сжимаемость в различных местах строительной площадки. В результате находят максимальное Еmax и минимальное Еmin значение модуля сжимаемости.

Основание считается таким, что его осадка мало зависит от сжимаемости, если Еmin = 200 кг/см?, иначе необходимо проверить выполнение еще двух условий:

1,8? Еmax/Еmin? 2,5 (при 200> Еmin ? 150 кг/см?);

1,3? Еmax/Еmin? 1,5 (при 150> Еmin ? 75 кг/см?);

Существуют специальные таблицы, по которым определяют абсолютные значения деформации f. Не приводя таблицы, следует указать, что в зависимости от типа стен и отношения длины ленточного фундамента к высоте стены, максимальная осадка f изменяется от 8 до 15 см.

При отношении Еmax/Еmin Дополнительный материал:

Расчёт нагрузки на фундамент

Нагрузка на фундамент — это допустимые цифровые значения, обозначающие несущую способность. Проведение точных расчётов сопряжено с выполнением геологических исследований и определением степени рыхлости грунта и насыщения его влагой.

Зачем проводятся расчёты нагрузки на фундамент

Расчет нагрузки, которую будет переносить фундамент в процессе эксплуатации, является ключевым этапом проектирования любого основания. Исходя из данных расчетов определяются необходимые несущие характеристики будущего фундамента, его типоразмер и опорная площадь.

Определяемые нагрузки веса здания, снегового и ветрового воздействия, а также эксплуатационного давления, также сопоставляются с несущей способностью грунта на строительной площадке, поскольку несущая способность почвы, в некоторых случаях, может быть меньшей, чем несущие свойства самого фундамента.

Рис: Возможный результат неправильного расчета нагрузок на фундамент дома

Ответственное отношение к проведению данных расчетов гарантирует, что фундамент под конкретное здание будет подобран правильно. В противном случае, вы рискуете построить дом на слишком слабом фундаменте, что приведет к его разрушению и деформации, либо обустроить фундамент с недостаточной опорной площадью, который под весом здания просто осядет в грунт.

Общие правила проведения расчёта нагрузки на фундамент

Определяется нагрузка посредством использования переменных и постоянных величин:

  • масса здания;
  • вес основания;
  • снеговые нагрузки на кровлю;
  • ветряное давление на здание.

Общая масса здания вычисляется при сложении веса стен с перекрытиями, дверей с окнами, стропильной системы и кровли, а также крепежей, сантехники, декоративных элементов и количества людей, которые будут единовременно проживать в доме.

Расчёт нагрузки на ленточный фундамент

Определение нагрузки на ленточное основание начинается с подсчёта массы самой ленты, для чего используется следующая формула:

V – объём стен;
q – плотность материала основания.

Необходимо произвести суммирование всех типов давления на фундамент, для чего можно воспользоваться следующей формулой: (Pд+Pфл+ Pсн+Pв)/ Sф.

Получение точных сведений, возможно при учёте видов стен, надо определить, какие из них несущие и выполняют функцию удержания перекрытий, лестничных пролётов, стропил. Выявляются самонесущие стены, выполняющие функцию поддержания исключительно собственной массы. Исходя из этих данных, определяют под какую сторону закладывать стены определённой ширины, с обязательной проверкой допустимых значений.

Расчёт нагрузки на столбчатый фундамент

Определение нагрузки на фундамент столбчатого типа, осуществляется по одной формуле. Здесь надо учитывать, что воздействие здания будет распределяться между всеми существующими опорами. Требуется умножить площадь сечения столба () на высоту (H). Результатом вычисления станет получение объёма, который следует перемножить с плотностью материала, используемого для возведения фундамента (q)и общим числом столбиков, заглубляемых в почву.

  • Вычисления будут проводиться по следующей формуле: Pфc= Sс× H× q×N.
  • Определить суммарное сечение, можно по следующей формуле: Sсо= Sс × N.

Вычислить величину нагрузки на сваи, можно разделив массу дома на его опорную площадь, что будет выглядеть следующим образом: P/Sсо.

Расчёт нагрузки на свайный фундамент

Особенностью расчёта свайного основания, является необходимость выявления массы здания (P), которая делится на количество опор.

Рассчитывать нагрузку на свайный фундамент необходимо для того, чтобы в дальнейшем при проектировании ее можно было сопоставить с максимально допустимой нагрузкой на грунт строительной площадки, и при необходимости увеличить число свай либо сечение используемых опор

Чтобы сопоставить допустимые нагрузки на свайный фундамент и грунт необходимо выполнить следующие расчеты:

  • Определить вес здания и все сопутствующие нагрузки, просуммировать их и умножить на коэффициент запаса надежности;
  • Определить опорную площадь одной сваи по формуле: «r2 * 3.14» (r- радиус сваи, 3,14 — константа), после чего вычислить общую опорную площадь основания, умножив полученную величину на количество свай в фундаменте;
  • Рассчитать фактическую нагрузку на 1 см2 грунта: массу здания разделяем на опорную площадь фундамента;
  • Полученную нагрузку сопоставить с нормативной допустимой нагрузкой на грунт.

Для примера: дом массой 95 тонн. (с учетом снеговых и ветровых нагрузок) строится на фундаменте из 50 буронабивных свай, общая опорная площадь которых составляет 35325 см2. Грунт на участке представлен твердыми глинистыми породами, которые выдерживают нагрузку в 3 кг/см2.

  • Фактическая нагрузка на грунт: 95000/35325 = 2,69 кг/см2.

Как показывают расчеты, нагрузки от здания, передаваемые фундаментов на грунт, позволяют реализовывать данный проект в конкретных грунтовых условиях.

Порядок проведения вычислений и расчётов

Независимо от типа основания, расчёты производятся в следующей последовательности:

  • Необходимо выяснить параметры, касающиеся единицы длины опоры, помимо нагрузок от веса самого строения, которые состоят из массы стен, перекрытий и кровли, также определяется эксплуатационное давление, нагрузки от снегового покрова и ветровые нагрузки;
  • Расчет массы фундамента. Основание дома также будет оказывать нагрузку на почву, которую необходимо высчитать и добавить к нагрузкам от массы здания. Чтобы сделать это, нужно исходя из габаритов (высоты, ширины и периметра) определить объем основания, и умножить его на объемную плотность бетона (массу одного кубометра).
  • Расчет несущих характеристик почвы — для этого нужно определить тип грунта, и в соответствии с нормативными таблицами вычислить допустимую нагрузку на 1 кв.см. почвы.
  • Cверка полученных данных с сопротивлением почвы – если возникает необходимость, то осуществляется корректировка площади опоры, например, в случае с ленточным основанием, увеличивается его толщина. При обустройстве свайных или столбчатых оснований необходимо увеличить количество опор в фундаменте либо площадь их сечения;
  • Измерение фундамента – определение размеров;
  • Вычисление толщины подушки из песка, формируемой непосредственно под подошвой. Уплотняющая подсыпка из песка и гравия необходима для предотвращения усадки почвы под массой здания и для минимизации вертикальных сил пучения. В нормальных условиях ее толщина составляет 20 см (10 см песка и 10 см гравия), однако при строительстве тяжелых домов в пучинистом грунте она может быть увеличена до 50 см.

Необходимо учесть, что приведённые формулы расчёта нагрузки, будут актуальны исключительно в сфере малоэтажного строительства, то есть при возведении объектов высотой до 3-х этажей. Схема является упрощённой, так как учитывает только удельное сопротивление грунта, при необходимости прогнозирования сдвига грунтовых слоёв, следует обратиться за помощью к профессионалам. Желательно проводить расчёты дважды, чтобы наверняка определить нужные параметры, так как от этого зависит устойчивость здания.

Собираем показатели грунта

При проектировании фундамента необходимо проводить геодезический анализ грунта на строительной площадке, который позволяет определить три важных показателя — тип почвы, глубину ее промерзания и уровень расположения грунтовых вод.

Исходя из типа грунта вычисляется его несущая характеристика, которая используется при расчете опорной площади основания. Глубина промерзания почвы определяет уровень заглубления фундамента — при строительстве в условиях пучинистых грунтов фундамент необходимо закладывать ниже промерзающего пласта земли. На основании данных о грунтовых водах определяется необходимость обустройства дренажной системы и гидроизоляции фундамента.

Рис: Структура грунтов на территории Московской области

Для сбора показателей необходимо с помощью ручного бура по периметру площадки под застройку сделать несколько скважин глубиной 2-2.5 м. Одна скважина должна располагаться в центре участка, еще две — в центральных частях боковых контуров предполагаемого фундамента. Необходимость бурения нескольких скважин обуславливается тем, что на разных участках площадки может наблюдаться отличающийся уровень грунтовых вод.

В первую очередь нужно определить тип почвы: в процессе бурения возьмите изымаемый из скважины грунт (с глубины 2-ух меров) и скатайте его в плотный цилиндр, толщиной 1-2 сантиметра. Затем попытайтесь согнуть цилиндр.

  • Если почва рыхлая и цилиндр из нее сформировать невозможно (она попросту рассыпается), вы имеете дело с песчаным грунтом;
  • Цилиндр скатывается, но при этом он покрыт трещинами и разламывается при сгибающем воздействии, значит грунт на участке представлен супесями;
  • Цилиндр плотный, но при сгибании ломается — легкий суглинок;
  • Грунт хорошо скатывается, но при сгибании покрывается трещинами — тяжелый суглинок с большим содержанием глины;
  • Почва легко скатывается, не трескается и не ломается при сгибании — глинистый грунт.

Далее необходимо определить показатель уровня грунтовых вод. Оставьте пробуренные скважины на ночь, чтобы они заполнились водой. На следующее утро возьмите деревянную рейку двухметровой длины и обмотайте ее бумагой, опустите рейку в скважину. По мокрому участку определите, на каком расстоянии от поверхности скважины расположена вода.

Рис: Пробная скважина для определения уровня грунтовых вод

Предлагаем вашему вниманию карту расчетной глубины промерзания почвы в разных регионах России, которую нужно использовать при самостоятельном проектировании фундамента.

Определяем несущую способность грунта

Ориентировочную несущую способность грунта можно определить на основе проделанных ранее изысканий. Зная тип грунт на участке под застройку сопоставьте его с данными в нижеприведенной таблице.

Обсуждения

Обсуждение: СП 22.13330.2011. Основания зданий и сооружений

Краткая аннотация от разработчика

Актуализация и гармонизация с Еврокодами

СНиП 2.02.01-83* «Основания зданий и сооружений»

Головной исполнитель – ОАО «НИЦ «Строительство» НИИОСП им. Герсеванова

Целью актуализации норм и правил является создание нормативного документа, заменяющего действующий в настоящее время СНиП 2.02.01-83* «Основания зданий и сооружений», применение которого при проектировании оснований зданий и сооружений обеспечивает соблюдение требований проекта Федерального закона «Технический регламент о безопасности зданий и сооружений» и устанавливает требования по безопасности зданий и сооружений для жизни, имущества граждан и окружающей среды, во исполнение распоряжения правительства Российской Федерации № 1047-р от 21 июня 2010 г.

Задачи работы заключаются в повышении уровня безопасности, степени соответствия зданий и сооружений их функциональному назначению, обеспечении снижения энергозатрат, применения единых методов определения эксплуатационных характеристик, повышении уровня гармонизации этих требований с европейскими и международными нормативными документами.

Нормы и правила распространяются на проектирование оснований вновь строящихся и реконструируемых зданий и сооружений в открытых котлованах.

Нормы и правила не распространяются на проектирование и устройство оснований и фундаментов гидротехнических сооружений, опор мостов и труб под насыпями, дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, а также оснований глубоких опор и фундаментов машин с динамическими нагрузками.

Исходными данными для разработки норм и правил «Основания зданий и сооружений» являются:

  • законодательные и нормативные правовые акты;
  • нормативно-технические документы;
  • международные стандарты в области действия норм и правил;
  • замечания юридических и физических лиц, органов исполнительной власти, иных заинтересованных лиц, поступившие в адрес разработчика в письменной форме в рамках публичного обсуждения проекта норм и правил в порядке, установленным постановлением Правительства Российской Федерации от 19 ноября 2008 г. № 858.

Пересмотренные нормы и правила устанавливают технические правила и рекомендации процесса проектирования (включая изыскания) оснований здания и сооружений в области его действия по следующим разделам:

  • общие указания;
  • определение расчетных значений характеристик грунтов;
  • расчет оснований по несущей способности;
  • расчет оснований по деформациям;
  • особенности проектирования оснований сооружений, возводимых на просадочных, набухающих, биогенных, элювиальных, засоленных, насыпных, пучинистых и намывных грунтах;
  • особенности проектирования оснований сооружений, возводимых на подрабатываемых территориях, в сейсмических районах, на закарстованных территориях;
  • особенности проектирования оснований опор воздушных линий электропередачи, оснований малоэтажных зданий, оснований подземных частей сооружений, оснований высотных зданий;
  • проектирование закрепленных грунтов;
  • проектирование водопонижения, включая дренажи;
  • геотехнический мониторинг.

Основные вновь вводимые положения

В целях пересмотра норм и правил выполнена доработка действующего СНиП 2.02.01-81* «Основания зданий и сооружений» по следующим основным направлениям:

  • повышение уровня надежности и безопасности зданий и сооружений (механическая безопасность, безопасность при опасных природных процессах и явлениях и (или) техногенных воздействиях, безопасный уровень воздействия зданий и сооружений на окружающую среду и пр.) в соответствии с «Техническим регламентом о безопасности зданий и сооружений» (Федеральный закон 384);
  • обеспечение соответствия разработанных норм требованиям современных условий строительства (развитие монолитного домостроения, увеличение объема строительства высотных зданий, возведение сооружений с подземной частью в условиях плотной городской застройки и т.д.) и эксплуатации зданий и сооружений, в т.ч. направленным на энергосбережение в соответствии с Федеральным законом 291;
  • гармонизация с международно-признанными нормами и правилами (EN 1997-1 «Еврокод 7: Геотехническое проектирование — часть 1: Общие правила»).

Для реализации вышеуказанных направлений в нормы и правила внесены следующие основные новые (дополнительные) положения (по отношению к СНиП 2.02.01-83* «Основания зданий и сооружений»).

Все пункты глав и приложения Строительных норм и правил разделены по принципу обязательного и добровольного применения при проектировании оснований и фундаментов. Пункты глав и приложений строительных норм и правил, в конце которых указано «(Добровольное)» применяются на добровольной основе, применение остальных пунктов носит обязательный характер. При этом проектные решения, принятые при проектировании без учета требований и рекомендаций пунктов и приложений строительных норм и правил, носящих добровольный характер, должны отвечать требованиям пунктов и приложений обязательного характера и быть обоснованными в отношении обеспечения безопасности, долговечности и экономичности в процессе строительства и эксплуатации зданий и сооружений.

Разработано положение, согласно которому разработанные нормы и правила основаны на допущениях и предусматривают удовлетворение требований к: квалификации и опыту специалистов, допущенных к выполнению работ по изысканиям, проектированию и строительству; связи и координации этих специалистов, контролю качества строительных работ и применяемым материалам; соответствию использования проектируемого сооружения его назначению, требованиям по эксплуатации и др..

Дано условие расчета оснований по деформациям для реконструируемых сооружений. Приведены рекомендуемые значения предельных дополнительных деформаций основания реконструируемых сооружений в зависимости от категории их технического состояния и конструктивной схемы.

Даны указания по эмпирическому расчету нормативных значений деформационно-прочностных характеристик намывных грунтов (φ, с, Е).

Дополнены требования к инженерно-геологическим изысканиям для проектирования оснований сооружений, возводимых на закарстованных территориях.

Введен раздел с указаниями по проектированию оснований подземных частей сооружений, включающий:

  • дополнительные требования к инженерным изысканиям;
  • нагрузки и воздействия, которые необходимо учитывать в расчетах;
  • представлены формулы и пояснения к определению активного и пассивного давлений грунта на подпорные конструкции котлованов или подземных частей сооружений;
  • приведены расчеты эффективных величин бокового давления проницаемых грунтов на ограждающие конструкции, котлована с учетом фильтрационных сил при несовершенной противофильтрационной завесе и выполнении водопонижения;
  • дано условие, исключающее прорыв напорными водами вышележащего водоупорного слоя грунта;
  • представлен расчет на гидравлическое разрушение водонасыщенного грунта, сопровождаемого суффозией при восходящей фильтрации в котловане;
  • в расчетах введены коэффициенты надежности по нагрузке;
  • приведены рекомендации на выполнение геотехнического прогноза по определению радиуса зоны влияния и оценке влияния нового строительства (реконструкции) на сооружения окружающей застройки и рекомендации по выбору мероприятий для обеспечения их эксплуатационной пригодности;
  • приведены рекомендуемые значения предельных дополнительных деформаций оснований фундаментов сооружений окружающей застройки.

Введен раздел высотные здания, включающий:

  • дополнительные требования к инженерным изысканиям и возможности размещения высотных зданий;
  • требования к учету коэффициента надежности по грунту при расчете оснований по деформациям;
  • требование совместного расчета системы «основание-фундамент-здание»;
  • указания по учету зависимости деформационных и прочностных характеристик грунтов от длительности приложения нагрузок;
  • рекомендации по последовательности строительства для уменьшения неравномерных осадок.

Введен раздел, посвященный геотехническому мониторингу (наблюдениям) за основанием и конструкциями вновь возводимых и реконструируемых сооружений, массивом грунта, окружающим строящиеся сооружения, состоянием и деформациями сооружений окружающей застройки. Даны рекомендации по определению состава и объема работ по геотехническому мониторингу.

Основные положения по гармонизации норм и правил Европейским стандартам

В качестве международного стандарта-аналога, по отношению к которому выполнялась гармонизация СНиП «Основания зданий и сооружений», принят Европейский стандарт EN 1997-1:2004 (Е) «Еврокод 7: Геотехническое проектирование – часть 1: Общие правила». Все обязательные положения актуализированной редакции СНиП 2.02.01 не противоречат обязательным положениям EN 1997-1:2004 (Е) «Еврокод 7: Геотехническое проектирование – часть 1: Общие правила».

В основу гармонизации норм и правил и Европейского стандарта положены общие принципы проектирования и расчета оснований и фундаментов по предельным состояниям и использование частных коэффициентов надежности. При актуализации норм и правил в текст документа добавлены требования расчета по предельным состояниям, связанным с поровыми давлениями в грунтовом массиве и давлением грунта на ограждения котлованов, ранее не рассматриваемые в тексте данного документа, но предусмотренными Европейским стандартом. В актуализируемых нормах и правилах предусмотрена единая система частных коэффициентов надежности, соответствующая одному из трех расчетных подходов, регламентируемых Европейским стандартом.

В рамках гармонизации с «Еврокод 7» с тексте норм и правил выполнено разделение пунктов и приложений на обязательные и добровольного применения.

Актуализированный текст норм и правил содержит перечень допущений и требований, содержащихся в Европейском стандарте, при выполнении которых использование нормативного документа будет обеспечивать надежность и безопасность принимаемых проектных решений.

Текст норм и правил содержит гармонизированные с Европейским стандартом требования по геотехническому мониторингу при строительстве и эксплуатации зданий и сооружений. Выполнение геотехнического мониторинга позволяет в российских условиях использовать так называемый «наблюдательный метод» проектирования, допускаемый Европейским стандартом.

В тексте норм и правил приведены ранее отсутствовавшие указания по определению грунта на подпорные конструкции, что соответствует требованиям «Еврокод 7», введен раздел «Основания подземных сооружений».

Нормы и правила дополнены приложением «Определения», включающий основные термины и определения по аналогии с Еврокодом 7. Система буквенных обозначений практически полностью соответствует Европейскому стандарту.

Разрабатываем проект строения самостоятельно

Расчёт фундамента под строящееся здание – достаточно сложная и трудоёмкая в плане всевозможных вычислений задача. Решить эту проблему самостоятельно трудно, ведь нужно учитывать большое количество параметров и величин. Но это обязательный этап проектных подготовительных работ, позволяющий определить глубину залегания фундамента, количество материалов и вид конструкции.

Для этого учитывают такие основные факторы:

  • вес конструктивных элементов;
  • вид и особенности почвы;
  • глубину промерзания грунта;
  • уровень грунтовых вод;
  • эксплуатационную нагрузку (вес мебели, техники, людей);
  • природные воздействия.

Самую большую нагрузку основание будет получать на боковых участках: это связано с тем, что на него будут опираться несущие стены и плиты перекрытия стропильной системы.

Основные параметры ленточного основания

Подсчёт массы здания

Чтобы произвести расчёт фундамента для дома, надо вычислить, с какой силой он будет давить на него. Для этого необходимо определиться с количеством этажей и размером будущего сооружения. Ведь даже деревянная балочная конструкция — это 100 кг/кв.м, цокольная — в два раза больше, а железобетонная — и подавно 500 кг/кв.м. В зависимости от выбранного материала, масса перекрытия подсчитывается по формуле:

Чтобы рассчитать, сколько весят стены здания, необходимо суммировать длину всех стен, даже перегородок, и умножить её на высоту. Полученное число необходимо умножить на удельный вес: для деревянных стен он составляет 100 кг/кв.м, кирпичных толщиной 15 см – 200-250 кг/кв.м, а для железобетонных -350 кг/кв.м.

Масса крыши также будет зависеть от используемого материала. Например, листовая сталь даёт нагрузку 30 кг на 1 кв.м, а шифер или рубероид — 50, самая тяжёлая черепица – 80 кг. Вычисления осуществляются по той же формуле, что и для перекрытия (1). Для нахождения площади крыши применяем формулу нахождения площади треугольника:

Все полученные данные суммируются, и мы получаем приблизительную величину воздействия постройки на основу. Лучше всего использовать максимальные значения, чтобы был запас.

Подсчёт массы основания

Помните, что толщина основы под дом зависит от типа почвы, уровня грунтовых вод и глубины промерзания грунта в конкретном регионе. Поэтому перед расчётами лучше всего провести геодезический анализ состояния участка. Затем используются следующие формулы:

Удельный вес железобетона составляет 2400 кг/ куб.м. Опорная площадь бетонного основания определяется по формуле:

Учёт природных воздействий

Для того чтобы учесть влияние атмосферных осадков, необходимо взять соответствующую вашему региону нормативную величину снежного покрова и умножить на грузовую площадь конструкции, которая давит на 1 м основы. Нужные сведения можно найти в документации, регламентирующей постройки.

Допустимая нагрузка

Сложив вес фундамента и дома, разделив полученное число на опорную площадь основания, получаем нагрузку в килограммах на 1 кв. см.

Значения допустимых нагрузок в зависимости от типа почвы

В приведенной выше таблице показаны допустимые значения нагрузок, в зависимости от типа грунта. Если ваши подсчёты превышают значения, приведённые в таблице, необходимо увеличить размеры основы с целью увеличения опорной площади. Например, если вы решили делать ленточное основание, то увеличьте его ширину или глубину залегания. У столбчатого можно изменить размер сечения опорного столба или их количество. Но не забывайте, что при этом увеличивается и масса постройки в целом, поэтому обязательно переделайте расчёты с самого начала.

После возведения любого типа здания и начала эксплуатации начинается так называемая естественная усадка дома. Это происходит в результате того, что почва под строением сжимается. В итоге, фундамент оседает на неопределённую глубину. Самое страшное – это неравномерная усадка, так как она является основной причиной появления трещин, перекосов и других признаков разрушения. Поэтому при обустройстве домашнего очага не забывайте об эксплуатационных нагрузках и старайтесь сделать так, чтобы их воздействие было равномерным.

Инструкция расчёта и проектирования основания здания в программе Engineering

Методика расчета фундамента

Возведение фундамента является одним из самых важных и ответственных этапов строительства сооружения – это должен понимать каждый индивидуальный застройщик. При разработке проекта дома специализированной компанией вся работа ложится на плечи профессионалов (спорное утверждение), которые несут ответственность за все расчеты при проектировании, в том числе и за правильный расчет фундамента. Однако подобные услуги не всегда радуют своей доступностью и качеством, приходится перепроверять, чтобы избежать лишних затрат при покупке стройматериалов. В этой статье мы попробуем достаточно подробно расписать процесс расчета фундамента. Более подробную информацию рекомендуем поискать в соответствующих СНиПах и СП по строительству.

Грунт – как много в этом слове!

Еще при покупке участка стоило на минуту закрыть глаза на красоту живописного места и буквально копнуть глубже — ознакомиться с составом почвы. Ведь от качественных показателей грунта зависит не только трудоемкость возведения построек на участке, но и затраты, связанные с процессом строительства.
Для оценки грунта на строительном участке достаточно выкопать несколько ям или пробурить пару скважин. Почему несколько? Дело в том, что в ряде случаев в пределах нескольких метров почва на участке может быть разной, соответственно, она обладает разными свойствами. Ни в коем случае не стоит полагаться на результаты исследований у соседей – чревато самыми неприятными последствиями!

Яма выкапывается на глубину 2 метра – этого вполне достаточно, чтобы иметь представление о том, с каким грунтом придется работать. Ниже мы привели список наиболее распространенных типов грунта, с которыми сталкиваются индивидуальные застройщики, стремящиеся построить фундамент и дом своими руками. Уже по внешнему виду грунта, глубине залегания и толщине отдельных слоев можно принимать решение о том, какое основание является предпочтительным, а от какого лучше отказаться.

Скальный и полускальный грунт отличаются высокой несущей способностью, поэтому на них можно возводить практически любой тип фундамента. По вполне понятным причинам, свайное основание не входит в этот список. Глинистый, песчаный, торфяной, илистый, грунт супесь и суглинок относятся к классу пучинистых, поэтому при строительстве дома на участке, где превалируют такие типы почвы, тип основания для постройки подбирают исходя из:

  • глубины залегания слоя пучинистого грунта. Например, пласт такой почвы начинается с поверхности и продолжается по всей глубине ямы. Можно заменить часть такого грунта непучинистым – песком – и возвести ленточный фундамент, либо отдать предпочтение свайному фундаменту;
  • уровня грунтовых вод. Чем ближе к поверхности грунтовые воды, тем больше накладывается ограничений на выбор типа фундамента. Если они находятся на глубине 1 м, лучше отдать предпочтение плитному основанию, если глубже, то можно рассмотреть незаглубленные ленточные;
  • глубины промерзания грунта. Если грунт пучинистый вплоть до глубины промерзания, его можно заменить непучинистым, либо построить заглубленный ленточный фундамент, или отдать предпочтение свайному основанию. Можно также использовать незаглубленный плитный фундамент.

Причем, необходимо одновременно учитывать сразу три вышеперечисленные характеристики грунта.

Расчет площади подошвы

Важное место в проектировании основания для будущей постройки занимает расчет площади подошвы. Данный этап работы проводится по формуле, представленной на рисунке ниже. Полученное в результате вычислений значение – примерная общая площадь подошвы фундамента, необходимая для того, чтобы буквально под нагрузкой не продавить грунт. Если речь идет о строительстве самого дорогостоящего – плитного фундамента (в статье про расчет арматуры вы оцените, насколько «экономично» данное решение), то можно и вовсе избежать этих расчетов, ведь достаточно залить плиту под всей площадью дома, а такой подошвы с избытком хватит для предупреждения всех сюрпризов, которые преподносит грунт.

Каждый тип грунта, в зависимости от глубины заложения, плотности и пористости, обладает своими показателями сопротивления нагрузкам. Само собой разумеется, что пласты почвы на большой глубине в результате естественной прессовки отличаются большими значениями сопротивления. Так, если вы планируете строить фундамент на глубину меньше 1,5 м, то расчетное сопротивление грунта примет несколько иное значение. В этом случае оно будет рассчитываться по формуле: R=0,005R0(100+h/3), где R0 – табличное значение расчетного сопротивления, h – глубина фундамента относительно нулевой отметки, см. В свою очередь, многое зависит от грунтовых вод, ведь повышенная влажность грунта уменьшает его сопротивление нагрузке.

Естественно, что при самостоятельном расчете придется повозиться над вычислением нагрузки от возводимой конструкции, которая будет оказываться на пласты грунта под подошвой фундамента. Сюда включается:

  • суммарная нагрузка от сооружения, в том числе и примерная – от фундамента (используются данные таблицы, представленной на рисунке ниже);
  • нагрузка от объектов, которые будут размещены в постройке (камины, мебель, люди);
  • вес сезонных нагрузок от снежного покрова. Для средней полосы принимается равным 100 кг на кв. м кровли, для южной – 50 кг, для северной – 190 кг.

Полученное в результате вычислений значение площади подошвы фундамента используется при составлении проекта фундамента: выборе ширины ленты (для ленточного монолитного основания) или площади опоры (для столбчатого, свайного типов фундаментов). Рассмотрим конкретный пример расчета для каменного дома 6×8 м. О том, как подбирается арматура для фундамента, пойдет речь уже в отдельной статье.

Пример расчета фундамента

Предположим, что мы строим двухэтажный каменный дом 6 × 8 м, проект которого предусматривает в том числе одну внутреннюю несущую стену. Масса дома с учетом всех нагрузок получилась равной 160 000 кг. Грунт – влажная глина (расчетное сопротивление – 6 кг/см²). Коэффициент условий – 1. Коэффициент надежности – 1,2. Подставляем все значения в формулу расчета площади подошвы:

S = 1,2 × 160000 / (1 × 6) = 32 000 см² = 3,2 м²

Для ленточного фундамента: при общей длине ленты примерно (6+8) × 2 + 6 (внутренняя стена) = 34 м минимальная ширина ленты составит 3,2 / 34 = 0,1 м. Это минимальное значение!

Если рассматривать фундамент для легкого деревянного дома при условии, что минимальная площадь подошвы получилась равной 1 м², то для возведения свайного фундамента (площадь основания каждой сваи принимается равным 0,07 м², при условии, что нижняя часть сваи в диаметре – 0,3 м) потребуется:

1 / 0,07 = 15 свай

Семь раз отмерь – один отрежь!

Рекомендуем несколько раз всё перепроверить, прежде чем приступать к непосредственному возведению фундамента. От этого зависит не только будущее сооружения, но и его надежность, безопасность эксплуатации. Немалую роль играют и экономические факторы, в том числе расходы на строительные материалы. В одной из следующих статей вы узнаете о том, как провести расчет объёма бетонной смеси и сможете оценить общую стоимость основания. Хочется верить, что представленная информация оказалась для вас полезной!

Как рассчитывается фундамент под металлические колонны

Несмотря на огромную популярность каркасных ленточных или монолитных фундаментов, в некоторых случаях они не могут использоваться из-за особенностей почвы, нагрузок на единицу площади конструкции, особенностей самого здания. Как правило, колонные фундаменты часто строятся для промышленных предприятий тяжелой энергетики, машиностроения и для военных нужд.

Такие бескаркасные фундаменты выдерживают огромные нагрузки, но расчет делается всегда каждой колонны отдельно, ведь тут проводится полный сбор всех допустимых нагрузок со стороны самого здания, почвы и климатических условий в регионе строительства.

Какие бывают колонны?

Железобетонные. Они отличаются прочностью, производятся в промышленных условиях, поэтому соответствуют всем нормам качества, а также марке бетона. Внутри таких колонн уже предусмотрено несущее армирование, но колонны такого типа тяжелые и для их монтажа приходится использовать мощную строительную технику.

Металлические. Они более легкие, чем железобетонные, но при этом тут используются совсем иные методы монтажа. К тому же, при расчете нужно однозначно определиться изначально, какой тип колонны лучше использовать.

Какие данные нужно собрать для правильного расчета фундамента под колонны?

Расчет колонного фундамента провести довольно сложно, ведь тут проводится сбор сразу многих факторов. Понятно, что самостоятельно такие сложные вычисления сделать практически невозможно, нужно специальное образование и навыки. Поэтому, перед началом расчета колонного фундамента, нужно получить следующие данные:

  • особенности климатических условий в регионе строительной площадки, тип и мощность ветров, а также периодичность ливней;
  • создать подробную геодезическую карту, причем лучше делать скважинный анализ с целью получить данные о структуре почвы, толщине мягких и прочных пород. Также нужно получить данные о залегании грунтовых вод, их сезонном движении;
  • масса самого здания. Чем она больше, тем и колонны должны быть мощнее. Понятно, что для железобетонных колонн используются фундаменты стаканного типа, а для металлических – совсем другие;
  • тип колонны, ее несущие характеристики, степень растяжения и сжатия при воздействии повышенных и пониженных температур;
  • тип бетона, его марка, состав и эксплуатационные характеристики;
  • структура будущего сооружения, материал несущих стен и перекрытий, высота сооружения.

Раньше расчет колонного основания делали на глаз, используя стандартные показатели допустимых нагрузок. Например, стандартная глубина погружения подушки составляла до 200 мм, а верхняя ее часть выступала из грунта на высоту до 50 мм.

Такие колонны не способны выдерживать подвижки почвы, ведь подушка быстро вымывалась и основание разрушалось. Теперь в расчете четко указывается максимально допустимая глубина погружения подушки, она должна быть ниже глубины промерзания почвы, где нагрузок уже практически нет.

Как делается расчет колонного фундамента

Как правило, расчет фундамента для металлической колонны подразумевает, способен ли грунт выдержать расчетную нагрузку фундамента, с которой он будет воздействовать на квадратном сантиметре площади, и сбор всех данных о будущем строительстве. Фактически, нужно получить полную информацию о здании, грунтах и грунтовых водах, провести сбор и систематизацию полученных данных и уже на их основании передать строителям готовый проект. Для этого нужно:

  • получить от архитектора проект будущего здания, спецификацию строительных материалов и коммуникаций;
  • рассчитать полную площадь опоры;
  • сделать сбор всех параметров, систематизировать их и получить фактическое расчетное давление здания в целом.

Как узнать нагрузку, которая будет создавать само здание? Для этого нужно получить подробные данные о самом здании, сделать сбор массы и характеристик всех материалов, которые могут использоваться при его возведении, а также проектируемых коммуникаций, будущей мебели, количества снега на крыше. Такой расчет состоит из нескольких частей:

  1. Расчет перекрытий зданий и стальных колонн. Сначала нужно узнать массу самой металлической колонны, ведь она также, хоть и незначительно, создает давление на грунт. Для этого требуется посчитать объем конструкции. Делается это по геометрической формуле вычисления объема цилиндра. Так получится объем, который затем умножается на плотность металла для получения массы стальной колонны.
  2. Затем нужно узнать массу перекрытий. Как правило, это фабричные изделия и каждый производитель уже указывает их массу. Поэтому, достаточно связаться с поставщиками.
  3. Бывают случаи, когда на металлические колонны устанавливается ростверковая конструкция. Ее массу также не проблема рассчитать, ведь для этого достаточно знать, какое количество бетона или готовых бетонных конструкций пойдет на строительство ростверка.
  4. Расчет массы стен. Тут многое зависит от материала, ведь кирпич весит меньше, чем бетон, но больше, чем пеноблоки. Соответственно, стоит провести сбор данных обо всех строительных материалах, используемых при строительстве здания.
  5. Расчет крыши. Сюда входит спецификация материалов, из которых сделано чердачное помещение, а также спецификация всех материалов крыши, вплоть до внешнего покрытия. При проектировании сооружения архитектор предоставляет подробную спецификацию, поэтому посчитать суммарную массу конструкций не составит труда.
  6. После суммирования всех полученных данных будет вычислена цифра, которая характеризует максимально допустимую нагрузку на опоры фундамента.

Чтобы узнать, какая сила давит на единицу площади опоры, нужно знать ее габаритные размеры. Если стальной столб имеет квадратное сечение 50 х 50 см, то площадь опоры будет составлять 2500 см². Тогда давление, которое будет воздействовать на единицу площади грунта, вычисляется методом деления массы здания на площадь одной опоры.

Теперь самый важный этап расчета фундамента для стальной опоры – это исследование характеристик грунта и сбор данных о его расчетном сопротивлении. Такие данные предоставит геодезическая служба. Если сопротивление грунта будет больше, чем расчетное от самого здания, тогда опора выдержит нагрузку и не деформируется со временем. Если показатели меньше, тогда нужно увеличивать количество столбов.

Но всегда существует правило: большее количество опор не будет лишним, поэтому часто проектировщики устанавливают опоры с интервалом приблизительно 1,5 – 3 м. Это делается с целью предоставления необходимого резерва прочности на конструкции, связанные с несанкционированной достройкой, обустройством помещений или установкой тяжелого промышленного оборудования. Как правило, при расчетах предоставляют обязательный 50% резерв прочности на каждую опору.

Дополнительные расчеты фундаментов для металлических колонн

Также проводится дополнительный расчет под существующие и перспективные геодезические изыскания. Для правильного обеспечения геодезии проводится контроль анкерных соединений, а именно высотное расположение их головок. Для этого используются шаблоны или кондуктор.

Шаблон – это металлическая плоская рама с готовыми гнездами для болтовых соединений. Они соединяются на опалубке с основными осями фундамента, затем закрепляются. Для получения более точных данных, на колонне изначально указывается уровень установки шаблона с целью контроля степени его смещения.

Анкера шаблона рекомендуется приварить к арматуре колонны, чтобы устранить вертикальное смещение во время крепежа конструкций. После заливки бетоном основания колонны, проводится первичный контроль над месторасположением шаблона и при необходимости делается корректировка еще до того, как бетон застынет.

Сейчас, увеличения прочности каркаса основания для стальной колонны достигают с помощью соединения стали и размещения в специальных колодцах. Такие углубления изначально предусматриваются в чаше основания, оно постоянно остается открытым, и бетоном не заливается на первом этапе строительства. Только, когда болт будет установлен, зафиксирован и его расположение точно замерено, тогда колодец закрывают.

Расчет несущей способности фундамента дома

Осадка фундамента

Ещё одной жестко нормируемой величиной при расчёте ленточного фундамента является его осадка. Её определяют методом элементарного суммирования, для которого вновь понадобятся данные из отчета об инженерно-геологических изысканиях.

Формула определения средней величины осадки по схеме линейно-деформируемого слоя (приложение Г СП 22.13330.2011).

Схема применения методики линейно-деформируемого слоя.

Исходя из опыта строительства и проектирования известно, что для инженерно-геологических условий, характерных отсутствием грунтов с модулем деформации менее 10МПа, слабых подстилающих слоев, макропористых ИГЭ, ряда специфичных грунтов, то есть при относительно благоприятных условиях расчёт осадки не приводит к необходимости увеличения ширины подошвы фундамента после расчёта по несущей способности. Запас по расчётной осадке по отношению к максимально допустимой обычно получается в несколько раз. Для более сложных геологических условий расчёт и проектирование фундаментов должен выполняться квалифицированным специалистом после проведения инженерных изысканий.

Расчет количества бетона, проволоки и арматуры

Определившись с размерами фундамента, нужно просчитать, сколько арматуры, проволоки и бетона нам понадобится.

С последним как раз всё просто. Объём бетона равен объёму фундамента, который мы уже нашли, когда считали нагрузку на грунт.

А вот какой использовать металл для армирования, ещё не решено. Здесь всё зависит от вида основания.

Арматура в ленточном основании

Для данного типа фундамента используют лишь два пояса армирования и арматуру толщиной до 12 мм. Горизонтальные продольные прутья арматуры подвергаются большей нагрузке, чем вертикальные или поперечные.

Поэтому по горизонтали кладут ребристую арматуру, а по вертикали – гладкую.

Длину ребристой арматуры несложно высчитать, если умножить общую длину основания на количество рядов прутков. Если фундамент узкий (40 см), достаточно и двух продольных прутков на каждый пояс. В противном случае, количество арматуры в поясе придётся увеличить.

Поперечные прутья монтируют через каждые 0,5 м, отступая по 5-10 см от края фундамента. Определяем количество соединений, поделив всю длину фундамента на 0,5 (шаг между пересечениями) и прибавив 1.

Чтобы найти длину гладкой арматуры, необходимой для одного пересечения, используем формулу:

(ШФ — 2*от)*2 + (ВФ – 2*от)*Р, где ШФ и ВФ – ширина и высота фундамента, от – отступ от края фундамента, Р – количество рядов арматуры в поясе.

количество необходимой для фундамента гладкой арматуры

Затраты вязальной проволоки для фундамента – это произведение расхода проволоки для одной связки (30 см), количества связок на одном пересечении (приравнивается к количеству рядов арматуры, помноженному на 4) и количества соединений.

Арматура в плитном основании

Для плитного основания применяют ребристую арматуру толщиной 10 мм и больше, укладывая её сеткой, с шагом в 20 см.

То есть на два пояса армирования понадобится:

2*(ШФ*(ДФ/0,2+1) + ДФ*(ШФ/0,2+1)) м арматуры, где ШФ – ширина, ДФ – длина фундамента.

пересечение верхней сетки соединить с соответствующим пересечением нижней

Учитывая толщину плиты и удалённость каркаса от поверхности плиты, определим необходимое для соединения поясов количество арматуры, используя формулу:

((ДФ/0,2+1)*(ШФ/0,2+1))*(ТП-2*от), где ТП – толщина плиты, от – отступ от поверхности.

сколько арматуры понадобится для плитного фундамента

Длина вязальной проволоки рассчитывается, исходя из формулы:

Арматура в столбчатом основании

При армировании фундаментных столбиков используют ребристые прутки толщиной 10-12 мм в вертикальной плоскости и гладкие шестимиллиметровые – в горизонтальной плоскости. Соединяют арматуру через каждые 40-50 см высоты столба.

Длина ребристой арматуры составляет:

КС*ДС*КП, где КС – количество столбиков, ДС – длина каждого столбика, КП – количество прутьев в одном столбике.

Количество гладкой арматуры:

Рмп*КП*Ксс, где Рмп – расстояние между ребристыми прутьями, КП – количество прутьев в столбике, Ксс – количество соединений в одном столбе.

Расход вязальной проволоки соответствует формуле:

Расчет фундамента на естественном основании по деформациям

Строения в процессе эксплуатации деформируются, и причиной этому могут быть вертикальные деформации оснований, на которых они построены. Такие деформации разделяют на осадки и просадки.

Схема внецентренно нагруженного свайного фундамента.

Коренное изменение сложившегося строения грунта называют просадкой. Причиной просадки может быть уплотнение почвы при замачивании. Рыхлый грунт может уплотниться при сотрясении. Иногда он начинает выпирать из-под подошвы фундамента. Таких изменений фундаментов по деформациям допускать нельзя. Вероятность их появления необходимо установить до начала строительства.

Если происходит уплотнение прочных грунтов из-за веса строения, в результате чего происходит , такую деформацию оснований называют осадкой. Как правило, в результате осадки в элементах здания трещины не появляются. Если грунт оседает по-разному под каждой из частей здания, это и может явиться причиной появления трещин в отдельных элементах его конструкции.

Причиной неравномерности осадки грунта могут быть:

  • разница плотностей и как следствие, неодинаковая их сжимаемость;
  • разное расширение его слоев в результате сезонных промерзаний и оттаиваний;
  • неодинаковая мощность пластов;
  • различные нагрузки на грунт со стороны строения, что приводит его к разным напряженным состояниям.

Существуют две причины, из-за которых необходимо выполнять расчет оснований по деформациям. Одной из них являются близко стоящие от строительства сооружения, существенно отличающиеся по весу.

Схема не симметричного свайного фундамента с определением смещенного центра тяжести.

Второй причиной осадки фундаментов могут быть слабые грунты. Это насыпные почвы, рыхлые пески в глинистых типах, находящихся в текучем состоянии, грунты с большим содержанием органических остатков. В таких видах возможна деформация фундамента.

Расчет оснований состоит в проверке выполнения неравенства:

где S – расчетная абсолютная величина осадки;
f – предельно допустимая осадка.

Предельные осадки, при которых не выполняется условие (2) могут быть причиной для формирования искусственного основания.

Значение S определяют путем проведения по установленной методике испытаний на сжимаемость в различных местах строительной площадки. В результате находят максимальное Еmax и минимальное Еmin значение модуля сжимаемости.

Основание считается таким, что его осадка мало зависит от сжимаемости, если Еmin = 200 кг/см², иначе необходимо проверить выполнение еще двух условий:

Существуют специальные таблицы, по которым определяют абсолютные значения деформации f. Не приводя таблицы, следует указать, что в зависимости от типа стен и отношения длины ленточного фундамента к высоте стены, максимальная осадка f изменяется от 8 до 15 см.

Для строительства дома такие сложные расчеты выполнять самостоятельно нецелесообразно. Допущенная по неопытности ошибка может обернуться существенными материальными затратами.

Общие положения

При возведении зданий и сооружений часто применяют ленточную опорную базу. От правильного расчёта на прочность ленточного фундамента зависит дальнейшая эксплуатация строения и его долговечность.

Ленточный фундамент

Застройщики крупных объектов заказывают проектную документацию на строительство зданий, домов и сооружений.При проектировании все конструкции рассчитывают на прочность для обеспечения их долговечной эксплуатации. Особенно важны прочностные характеристики конструктивных элементов основания дома.

Когда объект по своему объёму небольшой (малоэтажный жилой дом, дача или другое сооружение), затраты на изготовление проекта экономически невыгодны.

Даже имея минимум строительного опыта и знаний,можно рассчитать фундамент самостоятельно. На сегодня в интернете существует масса информации по тому, как определить прочность конструкций и материалов для возведения основания дома.Все методики и калькуляторы сети по определению прочностных качеств опорной базы зданий содержат сведения общего характера. Однако в каждом отдельном случае без самостоятельного расчёта конструкций фундамента не обойтись.

Определение сопротивления смещению мерзлого грунта относительно фундамента

1. Сопротивление
смещенного мерзлого грунта относительно фундамента определяется по таблице
настоящего приложения в зависимости от скорости пучения ut
и расчетной температуры промерзающего грунта Td под фундаментом.

2. Скорость
пучения грунта Ut, м/сутки, определяется из выражения

гдеhfi— деформация пучения ненагруженного основания, определяемая в
соответствии с ;

td— продолжительность периода,
в месяцах, промерзания грунта под фундаментом

Здесь t — продолжительность периода с отрицательными температурами воздуха, в
месяцах, определяемая в соответствии с главой СНиП 2.01.01-82.

d, hп, df — те же обозначения, что в .

3. Расчетная
температура грунта под фундаментом определяется по формуле

где Tmin — средняя температура
воздуха наиболее холодного месяца зимнего периода, °C,
определяемая в соответствии с главой СНиП 2.01.01-82.

Значения ss

Расчетная
температура грунта под фундаментомTd, °C

Средняя
скорость пучения грунта uf´102
м/сутки, промерзающего под подошвой фундамента

Поводы к расчётам осадки фундамента методом послойного суммирования

  • Основные причины осадки
  • Расчет осадки свайного фундамента
  • Подробнее о способе вычисления
  • Влияние слабых грунтов на состояние опор для дома
  • Рекомендации по закладке бетона во избежание просадки

Сегодня расчет осадки фундамента методом послойного суммирования имеет особую практическую важность, без этих данных спроектировать прочное основание невозможно. Этот пункт есть в нормативных требованиях по определенным деформациям опорных установок. Допущенные при монтаже опоры здания ошибки или неправильно подобранный материал дадут о себе знать процессом неравномерного проседания, что приведет к самым неприятным и даже опасным последствиям – разрушению.

Основной фактор, влияющий на степень проседания – это состав грунта. Все они делятся на виды, каждый из них имеет прочность в большей или меньшей степени. Самые надежные почвы скальные, основой для которых являются монолитные плиты. Далее, менее прочные идут дисперсные грунты, которые состоят из минеральных зерен разного размера, по-другому их называют еще несвязные, так как они не удерживают влагу.

Основные причины осадки

Симптом осадки оснавания

Осадка – это смещение основания в вертикальном положении, как следствие деформации грунтового слоя. А причин подвижности несколько:

  • закладка проводилась гораздо выше нормы;
  • поднятие грунтовых вод, попавших под фундамент;
  • длительный срок эксплуатации дома;
  • уплотнение почвы;
  • дефекты конструкции;
  • некачественные материалы;
  • надстройка лишних, не предусмотренных на начало строительства здания этажей.
  • подземные работы, проводимые вблизи от фундамента.
  • прогибы/выгибы опоры;
  • сдвиг конструкции;
  • крен (сильный наклон) здания;
  • перекос;
  • закручивание, горизонтальные перемещения.

Это все касается критического состояния, но существует также прогнозируемый процесс осадки фундамента, среди которых есть предельно допустимые для каждого типа здания отдельно. Железобетонные конструкции могут дать осадку до 8 см, здания на стальных сваях и опорах – до 12 см, деревянные, сборно-щитовые дома могут осесть до 15 см максимум.

Сегодня не установлена конкретная нормативная величина предельно допустимой нормы дополнительной осадки. Как правило, в документах не указывается различие между полученной при возведении здания, первоначальной и дополнительной осадкой. Для кирпичного дома это примерно 10-12 см. Последствие неравномерности, как известно – это перекосы, трещины, в худшем случае обрушение.

Расчет осадки свайного фундамента

Такие установки используются для самых разных конструкций, имеют активное распространение благодаря лёгкости монтажа, малозатратности и прочности. Специфика расчета осадки подобных оснований несколько отличается от схем для других оснований. Как быть, когда обнаружились трещины в основании и перекосы дома?

Для начала нужно разобраться, что вызвало этот процесс, понаблюдать за ним, обнаружив или исключив расширение и другие сильные изменения. Есть множество методов для установления точной расчетной осадки и самый из них популярный способ послойного суммирования.

Рассмотрите примеры осадки

Производится осадка методом послойного суммирования опоры дома под влиянием давления в фундаменте, спровоцированной нагрузкой рядом стоящих оснований в таком порядке:

  1. наносятся на геологический разрез очертания фундамента;
  2. подошва делится на горизонтальный, однородный по сжимаемости слой;
  3. рассчитываются стандартные показатели давления, образующиеся в месте пересечения вертикальной оси;
  4. устанавливается величина активной зоны;
  5. по формуле определяется осадка.

Полученные вычисления очень нужны, так как эти цифры сравниваются с допустимой осадкой. Она указывает на деформации, которые, возможно, произойдут в будущем для каждой отдельной конструкции. Если выяснится, что предельная осадка превышает нормы, то добавляются еще сваи, для упрочнения фундамента.

Такая осадка фундамента методом послойного суммирования может проводиться при следующих условиях: грунт у основания – плотное, линейно-деформируемое изотропное тело; невозможно расширение грунта по бокам в фундаменте; опора дома не имеет жесткости.

Выявленная осадка – это стабилизированная деформация, то есть она достигается естественным путем в течение нескольких десятков лет под воздействием грунтов. В глинистых, водонасыщенных почвах стабилизация может выходить за пределы десятилетий до сотен лет.

Подробнее о способе вычисления

Расчёт дома и его особенностей

Вычисление путем послойного суммирования дает возможность определить осадку не только возводимого, а также рядом стоящих оснований, учесть разнородность, которая выражается в изменениях конструкции по глубине. Данным способом можно рассчитать осадку сразу нескольких вертикалей. Сложность послойного суммирования в том, что здесь нужно найти дополнительные нагрузки, извне, дающие напор на фундамент возводимого сооружения. Напряжения находятся методом угловой точки, когда рабочая ось принимается за угловую.

Особенно удобен метод послойного суммирования при большой подошве результат всегда эффективный. Особенно когда структура основания слоистая и резко меняется, когда сжимаются отдельные слои.

Во время определения осадки обязательно учитывается воздействие глубины заложения фундамента и по ней устанавливаются суммированные пределы. До возведения основания грунт, находящийся на уровне подошвы, был обжат двоением вышележащей почвы, поэтому чтобы определить величину осадки, за начальную точку давления принимается влияние веса на основании от дома.

Влияние слабых грунтов на состояние опор для дома

Когда по всему периметру сооружения слои напластования грунта однородные, которые не сжимаются при углублении, то расчеты проводятся по средней осадке фундамента. Зачастую принимают во внимание временную деформацию, также отдельно для каждого строительства и эксплуатации. Помимо основных нагрузок на основание учитывается влияние на грунт соседних фундаментов. Если в процессе строительства опоры под дом закладываются не одновременно, то оценивается неравномерная деформация рядом стоящих оснований.

При обнаружении в активной зоне грунта слоя, имеющего слабые несущие способности, чем пласт выше, то нужно выявить, как он может повлиять в целом на изменение фундамента. Этот слой берется за расчет, кода полное давление нагрузок в верхней его части не выше положенного напора для фактического фундамента, который будет опираться на этот грунт.

Рекомендации по закладке бетона во избежание просадки

Всем знакома ситуация когда приходится больше тратиться на ремонт, чем на строительство. Учитывая этот факт, стоит внимательно изначально относиться к процессу сооружения зданий с учетом всех технологий строительства. Так вы оградите себя от многих неприятностей.

Качественное надежное строительство – это хороший выбор материалов, обустройство дренажной конструкции и системы гидроизоляции. При возведении опоры для дома нужно использовать только надежный бетонный раствор и не скупиться на него. Плохой бетон, а в следствие фундамент непременно приведет к проседанию.

Важно не допустить литье бетона на промерзшую почву. Если нет возможности провести строительно-монтажные работы в теплое время года, тогда стоит позаботиться о согреве и защите раствора от проникновения ветра и холода. Смешивать бетон с водой нельзя, это существенно понизит его эксплуатационные характеристики, в том числе прочность. И не стоит забывать про определение осадки методом послойного суммирования фундамента.

Строительные работы, проводимые летом, не должны начинаться на 30°C жаре. Это может стать причиной ложного резкого сцепления материала. Лучшее время для заливки – вечер или раннее утро, когда солнце еще не сильно палящее. Действия выполняются только на однородном, непромерзлом грунте, на качественно подготовленную подушку.

Придерживаясь этих простых рекомендаций, вы сможете избежать неприятностей, связанных с осадкой основания здания. Когда все же вы заметили трещину, необходимо срочно провести соответствующий расчет осадки методом послойного суммирования и ваш дом простоит еще много лет. Обеспечьте опорному основанию дома достаточную площадь подошвы.

Правила и способы расчета фундамента

  1. Особенности
  2. Тип
  3. От чего зависит?
  4. Методы
  5. Как рассчитать?
  6. Советы

Неважно, какие в доме стены, мебель и дизайнерское оформление. Все это может в одно мгновение обесцениться, если при строительстве фундамента были допущены ошибки. А промахи касаются не только качественных его черт, но и основных количественных параметров.

Особенности

При расчете фундамента СНиП может оказаться бесценным помощником. Но важно правильно понимать суть изложенных там рекомендаций. Основополагающим требованием будет полное исключение намокания и промерзания подложки под домом.

Особенно актуальны эти требования, если грунт имеет повышенную склонность к пучению. Разведав точные сведения о почве на участке, можно уже смело обращаться к строительным нормам и правилам – там приведены скрупулезные рекомендации для строительства в любой климатической зоне и на любых существующих на Земле минеральных материалах.

Следует понимать, что достаточно правильное и глубокое представление могут составить только профессионалы. Когда проектирование фундамента ведется дилетантами, старающимися сэкономить на услугах архитекторов, как раз и получается масса проблем – перекашивающиеся дома, вечно сырые и потрескавшиеся стены, затхлые запахи снизу, ослабление несущей способности и так далее.

Профессиональный проект учитывает свойства конкретных материалов и финансовые ограничения. Благодаря этому он позволяет сбалансировать потери средств и достигаемые результаты.

Стабильность основания под домом прямо зависит от типа его. Существуют четкие минимальные требования к характеристикам фундаментов различных видов. Так, под домом размерами 6х9 м можно закладывать ленты шириной 40 см, это позволит иметь двукратный запас прочности по сравнению с рекомендуемой величиной. Если же монтировать буронабивные сваи, расширяющиеся внизу до 50 см, площадь единичной опоры достигнет 0,2 кв. м, и понадобится 36 свай. Более подробные данные можно получить только при непосредственном знакомстве с конкретной ситуацией.

От чего зависит?

Проектирование фундаментов даже в рамках одного типа может быть довольно разным. Основная граница проходит между основаниями мелкого и глубокого заложения.

Минимальный уровень закладки определяется:

  • свойствами грунтов;
  • уровнем находящихся в них вод;
  • обустройством подвалов и цокольных этажей;
  • расстоянием до подвалов соседних зданий;
  • прочими факторами, которые должны уже учитывать профессионалы.

При использовании плит нельзя поднимать их верхний край больше, чем на 0,5 м до поверхностной части здания. Если строится одноэтажный индустриальный объект, который не будет подвержен динамическим нагрузкам, либо жилое (общественное) здание в 1-2 этажа, существует определенная тонкость – такие постройки на грунтах, промерзающих на глубину от 0,7 м, возводятся с заменой нижней доли фундамента на подушку.

Для формирования этой подушки применяют:

  • гравий;
  • щебенку;
  • песок крупной либо средней фракции.

Тогда каменный блок должен иметь высоту минимум 500 мм; для случая с песком средних размеров готовят основание таким образом, чтобы оно поднималось над подземными водами. Фундамент под внутренние колонны и стены в обогреваемых сооружениях может не приспосабливаться к уровню воды и величине промерзания. Но для него минимальным значением будет 0,5 м. Заводить ленточную конструкцию под линию промерзания нужно на 0,2 м. При этом запрещается понижать ее больше чем на 0,5-0,7 м от нижней планировочной точки строения.

Методы

Общие рекомендации по размерам и заглублению могут оказаться полезными, но гораздо правильнее будет ориентироваться на результаты расчетов профессионального уровня. Большое значение при их выполнении имеет методика послойного суммирования. Она позволяет уверенно оценивать осадку основания, покоящегося на природной подложке из песка или грунта. Важно: существуют отдельные ограничения для применимости такого метода, но разобраться в этом глубоко смогут только специалисты.

Необходимая формула включает:

  • безразмерный коэффициент;
  • среднестатистическое напряжение элементарного грунтового слоя под действием внешних нагрузок;
  • модуль повреждения почвенной массы при первичной загрузке;
  • он же при вторичной загрузке;
  • средневзвешенное напряжение элементарного грунтового слоя под собственной массой, извлеченной при подготовке котлована почвы.

Нижнюю линию сжимаемого массива определяют теперь по полному напряжению, а не по дополнительному воздействию, как это рекомендуют строительные нормы и правила. В ходе лабораторных испытаний свойств почвы рассматривается сейчас обязательно нагружение с паузой (временным освобождением). Сначала основание под фундаментом условно разбивается на слои идентичной толщины. Затем измеряют напряжение на стыках этих слоев (строго под серединой подошвы).

После этого можно установить напряжение, создаваемоесобственной массой почвы на внешних границах слоев. Следующим шагом становится определение низовой линии толщи, подвергающейся сжатию. И только после всего этого можно, наконец, рассчитать как следует осадку фундамента в целом.

Для расчета внецентренно нагруженного основания дома практикуется иная формула. Она исходит из того, что требуется усиливать внешнюю границу несущего блока. Ведь именно туда будет приложена основная часть нагрузки.

Компенсировать изменение вектора приложения силы можно за счет армирования, но оно должно проводиться в строгом соответствии с проектными условиями. Иногда армируют подошву или ставят колонну. Начало расчета подразумевает установление сил, которые действуют по периметру фундамента. Упростить вычисления помогает сведение всех сил к ограниченному набору результирующих показателей, по которым можно судить о характере и интенсивности прилагаемых нагрузок. Очень важно правильно вычислить точки, в которых будут прилагаться результирующие силы к плоскости подошвы.

Далее занимаются собственно вычислением характеристик фундамента. Начинают с определения той площади, которую он должен иметь. Алгоритм примерно одинаков с тем, который используется и для нагруженного по центру блока. Разумеется, получить точные и окончательные цифры можно только при сдвиге на необходимые величины. Профессионалы оперируют таким показателем, как эпюра грунтового давления.

Рекомендуется делать ее величину равной целому числу от 1 до 9. Такое требование связано с обеспечением надежности и устойчивости конструкции. Обязательно высчитывается пропорция наименьшей и наибольшей нагрузок по проекту. Во внимание следует принимать как особенности самой постройки, так и применение тяжелой техники в ходе строительства. Когда предусмотрено воздействие крана на нагруженную за пределами центра фундаментную конструкцию, не допускается, чтобы минимальное напряжение было меньше 25% от максимального значения. В тех случаях, когда строительство будет вестись без использования тяжеловесных машин, приемлемым уровнем является любое положительное число.

Наивысшее допускаемое сопротивление грунтовой массы должно на 20% превосходить самый значительный уровень воздействия, возникающего снизу от подошвы. Рекомендуется просчитывать армирование не только наиболее нагружаемых участков, но и прилегающих к ним конструкций. Дело в том, что прилагаемая сила может смещаться по вектору вследствие износа, реконструкции, капитального ремонта или иных неблагоприятных факторов. Очень важно учесть все те явления и процессы, которые способны оказать вредное действие на фундамент и ухудшить его характеристики. Консультация со стороны профессиональных строителей поэтому отнюдь не будет лишней.

Расчет фундаментов

Тел: +7 (495) 728-94-19
Тел: +7 (963) 659-59-00
Москва, Олонецкий пр. д. 4/2

e-mail: mail@buroviki.ru

выполняем работы по г. Москве
и всей Московской области

Библиотека

Фундаменты:

Фундамент — общие сведения
Конструкции фундаментов
выбор типа фундамента
ленточный фундамент
столбчатый фундамент
свайный фундамент
мелкозаглубленный
Влияние грунтов на фундамент
оценка геологических условий
физико-механические свойтва
просадки фундамента
осадки грунтов фундамента
основные причины просадок
морозное пучение фундамента
сильносжимаемые грунты
пучинистые и набухающие грунты
выпирание пород основания
фундаменты на торфах
Расчет фундамента
типичные ошибки проектов
виды деформации фундамента
величины деформаций
усиление фундаментов

Библиотека

ООО «Буровики»:

Контакты
Рекомендательные письма
Допуски и Лицензии
Цены и сроки, прайс лист
Написать письмо

Геология Порядок работ Библиотека Цены Контакты

Расчет оснований фундаментов


1 400 рублей за метр. Подробнее
Почему стоит заказать именно у нас

Нормы разрешают для отдельных видов зданий и грунтовых напластований не рассчитывать осадки и их неравномерность при одновременном выполнении следующих условий:

  1. грунтовые условия площадки строительства соответствуют одному из указанных далее видов;
  2. инженерно-геологические условия площадки строительства соответствуют области применения типового проекта по п. 5.5.49 СП 50-101-2004;
  3. среднее давление по подошве фундаментов не превышает расчетного сопротивления грунта;
  4. степень изменчивости сжимаемости основания (отношение наибольшего значения приведенного по глубине модуля деформации грунтов основания в пределах плана сооружения к наименьшему значению) меньше предельной по п. 5.5.49 в СП 50-101-2004;
  5. площади отдельных фундаментов под несущими конструкциями отличаются не более чем в 2 раза.

Здания и грунты, для которых не обязателен расчет осадок фундаментов (исключая производственные здания с нагрузками на полы более 20 кПа (2 тс/м2)):

1) промышленные здания: одноэтажные с несущими конструкциями, малочувствительными к неравномерным осадкам (например, стальной или железобетонный каркас на отдельно стоящих фундаментах с шарнирно опертыми фермами, ригелями), или, с мостовыми кранами грузоподъемностью до 50 т включительно; многоэтажные высотой до шести этажей включительно с сеткой колонн не более 6×9 м;

2) жилые и общественные здания: многоэтажные прямоугольной формы в плане без перепадов по высоте с полным каркасом и бескаркасные с несущими крупноблочными, кирпичными или другими видами каменных стен, а также со стенами из крупных панелей (протяженные многосекционные высотой до девяти этажей включительно; несблокированные башенного типа высотой до 14 этажей включительно).

Виды грунтов основания:

  1. крупнообломочные грунты при содержании заполнителяменее 40%;
  2. пески любой крупности, кроме пылеватых, плотные и средней плотности;
  3. пески любой крупности, только плотные;
  4. пески любой крупности, только средней плотности при коэффициенте пористости е

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector