Как работают синхронные машины?
Синхронные машины — двигатели, генераторы и компенсаторы
Синхронная машина может работать генератором или двигателем. Синхронная машина может работать в качестве двигателя, если подвести к обмотке ее статора трехфазный ток из сети. В этом случае в результате взаимодействия магнитных полей статора и ротора поле статора увлекает за собой ротор. При этом ротор вращается в ту же сторону и с такой же скоростью, как и поле статора.
Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами. Синхронные двигатели применяются при мощности более 600 кВт и до 1 кВт как микродвигатели. Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения.
Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.
Синхронный двигатель отличается от синхронного генератора лишь пусковой успокоительной обмоткой, которая должна обеспечивать хорошие пусковые свойства двигателя.
Схема шестиполюсного синхронного генератора. Показаны сечения обмоток одной фазы (три обмотки, соединенные последовательно). В показанные на рисунке свободные пазы укладываются обмотки двух других фаз. Фазы соединяются в звезду или треугольник.
Режим генератора: двигатель (турбина) вращает ротор, на обмотку которого подается постоянное напряжение ? возникает ток, который создает постоянное магнитное поле. Магнитное поле вращается вместе с ротором, пересекает статорные обмотки и наводит в них одинаковые по модулю и частоте ЭДС, но сдвинутые на 1200 (симметричная трехфазная система).
Режим двигателя: обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент Мвр, который приводит ротор во вращение со скоростью магнитного поля.
Механическая характеристика синхронного двигателя – зависимость n(M)– представляет собой горизонтальный отрезок прямой.
Применение синхронных двигателей
Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cosфи = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.
Максимальный момент синхронного двигателя пропорционален U, а у асинхронного двигателя U 2 .
Поэтому при понижении напряжения синхронный двигатель сохраняет большую нагрузочную способность. Кроме того, использование возможности увеличения тока возбуждения синхронных двигателей позволяет увеличивать их надежность работы при аварийных понижениях напряжения в сети и улучшать в этих случаях условия работы энергосистемы в целом. Вследствие большей величины воздушного зазора добавочные потери в стали и в клетке ротора синхронных двигателей меньше, чем у асинхронных, благодаря чему к. п. д. синхронных двигателей обычно выше.
С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, и, кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором.
При эксплуатации синхронных двигателей возникли существенные трудности с их пуском. В настоящее время эти трудности преодолены.
Пуск и регулирование скорости вращения синхронных двигателей также сложнее. Тем не менее, преимущество синхронных двигателей настолько велико, что при больших мощностях их целесообразно применять всюду, где не требуется частых пусков и остановок и регулирования скорости вращения (двигатель-генераторы, мощные насосы, вентиляторы, компрессоры, мельницы, дробилки и пр.).
Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.
В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.
Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.
Что такое синхронный двигатель и где он используется
Синхронные электродвигатели (СД) не так распространены, как асинхронные с короткозамкнутым ротором. Но используются там, где нужен большой крутящий момент и в процессе работы будут происходить частые перегрузки. Также такой тип двигателей используются там, где нужна большая мощность, чтобы приводить в движение механизмы, благодаря высокому коэффициенту мощности и возможности улучшать коэффициент мощности сети, что существенно снизит затраты на электроэнергию и нагрузку на линии. Что такое синхронный двигатель, где он используется и какие у него плюсы минусы мы рассмотрим в этой статье.
- Определение и принцип действия
- Конструкция ротора
- Пуск синхронного двигателя
- Виды
- Сфера применения
- Преимущества и недостатки
Определение и принцип действия
Если говорить простым языком, то синхронным называют электродвигатель, у которого скорость вращения ротора (вала) совпадает со скоростью вращения магнитного поля статора.
Кратко рассмотрим принцип действия такого электродвигателя — он основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.
Постоянное магнитное поле ротора создаётся за счет обмотки возбуждения или постоянных магнитов. Ток в обмотках статора создаёт вращающееся магнитное поле, тогда как ротор в рабочем режиме представляет собой постоянный магнит, его полюса устремляются к противоположным полюсам магнитного поля статора. В результате ротор вращается синхронно с полем статора, что и является его основной особенностью.
Напомним, что у асинхронного электродвигателя скорость вращения МП статора и скорость вращения ротора отличаются на величину скольжения, а его механическая характеристика «горбатая» с пиком при критическом скольжении (ниже его номинальной скорости вращения).
Скорость, с которой вращается магнитное поле статора, может быть вычислена по следующему уравнению:
f – частота тока в обмотке, Гц, p – количество пар полюсов.
Соответственно по этой же формуле определяется скорость вращения вала синхронного двигателя.
Большинство электродвигателей переменного тока, используемых на производстве, выполнены без постоянных магнитов, а с обмоткой возбуждения, тогда как маломощные синхронные двигатели переменного тока выполняются с постоянными магнитами на роторе.
Ток к обмотке возбуждения подводится за счет колец и щеточного узла. В отличие от коллекторного электродвигателя, где для передачи тока вращающейся катушке используется коллектор (набор продольно расположенных пластин), на синхронном установлены кольца поперек одного из концов статора.
Источником постоянного тока возбуждения в настоящее время являются тиристорные возбудители, часто называемые «ВТЕ» (по названию одной из серий таких устройств отечественного производства). Ранее использовалась система возбуждения «генератор-двигатель», когда на одном валу с двигателем устанавливали генератор (он же возбудитель), который через резисторы подавал ток в обмотку возбуждения.
Ротор почти всех синхронных двигателей постоянного тока выполняется без обмотки возбуждения, а с постоянными магнитами, они хоть и похожи по принципу действия на СД переменного тока, но по способу подключения и управления ими очень сильно отличаются от классических трёхфазных машин.
Одной из основных характеристик электродвигателя является механическая характеристика. Она у синхронных электродвигателей приближена к прямой горизонтальной линии. Это значит, что нагрузка на валу не влияет на его обороты (пока не достигнет какой-то критической величины).
Это достигается именно благодаря возбуждению постоянным током, поэтому синхронный электродвигатель отлично поддерживает постоянные обороты при изменяющихся нагрузках, перегрузках и при просадках напряжения (до определенного предела).
Ниже вы видите условное обозначение на схеме синхронной машины.
Конструкция ротора
Как и любой другой, синхронный электродвигатель состоит из двух основных частей:
- Статор. В нём расположены обмотки. Его еще называют якорем.
- Ротор. На нём устанавливают постоянные магниты или обмотку возбуждения. Его также называют индуктором, из-за его предназначения — создавать магнитное поле).
Для подачи тока в обмотку возбуждения на роторе устанавливают 2 кольца (так как возбуждение постоянным током, на одно из них подают «+», а на другое «—»). Щетки закреплены на щеткодержателе.
Роторы у синхронных электродвигателей переменного тока бывают двух типов, в зависимости от назначения:
- Явнополюсные. Четко видны полюса (катушки). Используют при малых скоростях и большом числе полюсов.
- Неявнополюсные – выглядит как круглая болванка, в прорези на которой уложены провода обмоток. Используют при больших скоростях вращения (3000, 1500 об/мин) и малом числе полюсов.
Пуск синхронного двигателя
Особенностью этого вида электрических машин является то, что его нельзя просто подключить к сети и ожидать его запуска. Кроме того, что для работы СД нужен не только источник тока возбуждения, у него и достаточно сложная схема пуска.
Запуск происходит как у асинхронного двигателя, а для создания пускового момента кроме обмотки возбуждения на роторе размещают и дополнительную короткозамкнутую обмотку «беличью клетку». Её еще называют «демпфирующей» обмоткой, потому что она повышает устойчивость при резких перегрузках.
Ток возбуждения в обмотке ротора при пуске отсутствует, а когда он разгоняется до подсинхронной скорости (на 3-5% меньше синхронной), подаётся ток возбуждения, после чего он и ток статора совершает колебания, двигатель входит в синхронизм и выходит на рабочий режим.
Для ограничения пусковых токов мощных машин иногда уменьшают напряжение на зажимах обмоток статора, подключив последовательно автотрансформатор или резисторы.
Пока синхронная машина запускается в асинхронном режиме к обмотке возбуждения подключаются резисторы, сопротивление которых превышает сопротивление самой обмотки в 5 — 10 раз. Это нужно чтобы пульсирующий магнитный поток, возникающий под действием токов, наводимых в обмотке при пуске, не замедлял разгон, а также чтобы не повредить обмотки из-за индуцируемыми в ней ЭДС.
Видов таких машин очень много, выше была описана конструкция синхронного электродвигателя переменного тока с обмотками возбуждения, как самого распространенного на производстве. Есть и другие типы, такие как:
- Синхронные двигатели с постоянными магнитами. Это различные электродвигатели, такие как PMSM – permanent magnet synchronous motor, BLDC – Brushless Direct Current и прочие. Отличия, между которыми, состоят в способе управления и форме тока (синусоидальная или трапецивиденая). Их еще называют бесколлекторными или бесщеточными двигателями. Используются в станках, радиоуправляемых моделях, электроинструменте и т.д. Они работают не напрямую от постоянного тока, а через специальный преобразователь.
- Шаговые двигатели — синхронные бесщеточные двигатели, у которых ротор точно удерживает заданное положение, их используют для позиционирование рабочего инструмента в ЧПУ станках и для управления различными элементами автоматических систем (например, положение дроссельной заслонки в автомобиле). Состоят из статора, в этом случае на нём расположены обмотки возбуждения, и ротора, который выполнен из магнито-мягкого или магнито-твёрдого материала. Конструктивно очень похожи на предыдущие типы.
- Реактивные.
- Гистерезисные.
- Реактивно-гистерезисные.
Последние три типа СД также не имеют щеток, они работают за счет особой конструкции ротора. У реактивных СД различают три их конструкции: поперечно-расслоенный ротор, ротор с явновыраженными полюсами и аксиально-расслоенный ротор. Объяснение принципа их работы достаточно сложно, и займет большой объём, поэтому мы опустим его. Такие электродвигатели на практике вы, скорее всего, встретите нечасто. В основном это маломощные машины, используемые в автоматике.
Сфера применения
Синхронные двигатели стоят дороже чем асинхронные, к тому же требуют дополнительного источника постоянного тока возбуждения – это отчасти снижает ширину области применения этого вида электрических машин. Однако, синхронные электродвигатели используют для привода механизмов, где возможны перегрузки и требуется точное поддерживание стабильных оборотов.
При этом чаще всего используются в области больших мощностей — сотен киловатт и единиц мегаватт, и, при этом, пуск и остановка происходят достаточно редко, то есть машины работают круглосуточно долгое время. Такое применение обусловлено тем, что синхронные машины работают с cosФи приближенном к 1, и могут выдавать реактивную мощность в сеть, в результате чего улучшается коэффициент мощности сети и снижается её потребление, что важно для предприятий.
Преимущества и недостатки
Если говорить простыми словами, то у любой электрической машины есть свои плюсы и минусы. У синхронного двигателя положительными сторонами является:
- Работа с cosФи=1, благодаря возбуждению постоянным током, соответственно они не потребляют реактивной мощности из сети.
- При работе, с перевозбуждением отдают реактивную мощность в сеть, улучшая коэффициент мощности сети, падение напряжения и потери в ней и повышается КМ генераторов электростанциях.
- Максимальный момент, развиваемый на валу СД, пропорционален U, а у АД — U² (квадратичная зависимость от напряжения). Это значит, что у СД хорошая нагрузочная способность и устойчивость работы, которые сохраняются при просадке напряжения в сети.
- В следствие всего этого скорость вращения стабильна при перегрузках и просадках, в пределах перегрузочной способности, особенно при повышении тока возбуждения.
Однако существенным недостатком синхронного двигателя является то, что его конструкция сложнее, чем у асинхронных с КЗ-ротором, нужен возбудитель, без которого он не сможет работать. Всё это приводит к большей стоимости по сравнению с асинхронными машинами и сложностями в обслуживании и эксплуатации.
Пожалуй, на этом достоинства и недостатки синхронных электродвигателей заканчиваются. В этой статье мы постарались кратко изложить общие сведения о синхронных электродвигателях. Если у вас есть чем дополнить материал – пишите в комментариях.
Синхронные двигатели
§ 103. СИНХРОННЫЕ ДВИГАТЕЛИ
Синхронный двигатель не имеет принципиальных конструктивных отличий от синхронного генератора. Так же как и в генераторе, на статоре синхронного двигателя помещается трехфазная обмотка, при включении которой в сеть трехфазного переменного тока будет создано вращающееся магнитное поле, число оборотов в минуту которого
На роторе двигателя помещена обмотка возбуждения, включаемая в сеть источника постоянного тока. Ток возбуждения создает магнитный поток полюсов. Вращающееся магнитное поле, полученное токами обмотки статора, увлекает за собой полюса ротора. При этом ротор может вращаться только с синхронной скоростью, т. е. со скоростью, равной скорости вращения поля статора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.
Основным достоинством синхронных двигателей является возможность их работы с потреблением опережающего тока, т. е. двигатель может представлять собой емкостную нагрузку для сети. Такой двигатель повышает соз j всего предприятия, компенсируя реактивную мощность других приемников энергии.
Так же как и в генераторах, в синхронных двигателях изменение реактивной мощности, т. е. изменение соs j, достигается регулированием тока возбуждения. При некотором токе возбуждения, соответствующем нормальному возбуждению, соsj=1. Уменьшение тока возбуждения вызывает появление отстающего (индуктивного) тока в статоре, а при увеличении тока возбуждения (перевозбужденный двигатель) — опережающего (емкостного) тока в статоре.
Достоинством синхронных двигателей является также меньшая, чем у асинхронных, чувствительность к изменению напряжения питающей сети. У синхронных двигателей вращающий момент пропорционален напряжению сети в первой степени, тогда как у асинхронных— квадрату напряжения.
Вращающий момент синхронного двигателя создается в результате взаимодействия магнитного поля статора с магнитным полем полюсов. От напряжения питающей сети зависит только магнитный Поток поля статора.
Синхронные двигатели выполняют преимущественно с явно Сраженными полюсами, и работают они в нормальном режиме при опережающем соs j=0,8. Возбуждение синхронные двигатели получают либо от возбудителя, либо от сети переменного тока через полупроводниковые выпрямители.
Пуск в ход синхронного двигателя непосредственным включением его в сеть невозможен, так как при включении обмотки статора в сеть создается вращающееся магнитное поле, а ротор в момент включения неподвижен, и следовательно, взаимодействия магнитных полей статора и ротора нет, т. е. двигатель не развивает вращающего момента. Поэтому для пуска в ход двигателя необходимо предварительно увеличить число оборотов ротора его до синхронной скорости или близкой к ней.
В настоящее время исключительное применение имеет так называемый асинхронный пуск синхронных двигателей, сущность которого заключается в следующем. В полюсных наконечниках ротора синхронного двигателя укладывается пусковая обмотка, выполненная в виде беличьего колеса, наподобие короткозамкнутой обмотки ротора асинхронной машины.
Обмотка статора двигателя включается в трехфазную сеть, и пуск его производится так же, как и пуск асинхронных двигателей с короткозамкнутым ротором.
После того как двигатель разовьет скорость, близкую к синхронной (примерно 95%), обмотка возбуждения включается в сеть постоянного тока и двигатель входит в синхронизм, т. е. скорость ротора увеличивается до синхронной.
При пуске в ход двигателя обмотка возбуждения замыкается на сопротивление, примерно в 10—12 раз большее сопротивления самой обмотки. Нельзя обмотку возбуждения при пуске в ход оставить разомкнутой или замкнуть накоротко. Если при пуске в ход обмотка возбуждения окажется разомкнутой, то в ней будет индуктироваться очень большая э. д. с, опасная как для изоляции обмотки, так и для обслуживающего персонала. Создание э. д. с. большой величины объясняется тем, что при пуске в ход поле статора вращается с большой скоростью относительно неподвижного ротора и с большой скоростью пересекает проводники обмотки возбуждения, имеющей большое число витков.
Если обмотку возбуждения замкнуть накоротко при пуске в ход, то двигатель при пуске под нагрузкой может развить скорость, близкую к половине синхронной, и войти в синхронизм не сможет.
Работа синхронной машины с потреблением из сети опережающего тока дает возможность использовать ее в качестве компенсатора. Как выше было отмечено, синхронный двигатель для сети может являться конденсатором и повышать соs j всей энергоустановки, компенсируя реактивную мощность других приемников энергии.
Повышение соs j снижает потребление реактивной мощности электроустановок предприятия и уменьшает стоимость электроэнергии.
Компенсатором является синхронный двигатель, работающий без нагрузки и предназначенный для повышения соs j предприятия. Таким образом, компенсатор является генератором реактивной мощности.
Конструктивно компенсатор отличается от синхронного двигателя незначительно. Компенсатор не несет механической нагрузки, поэтому его вал и ротор легче, а воздушный зазор меньше, чем у двигателя.
Основным недостатком синхронных двигателей является потребность в источнике как переменного, так и постоянного тока.
Потребность в источнике постоянного тока для питания обмотки возбуждения синхронного двигателя делает его крайне неэкономичным при небольших мощностях. Поэтому при малых мощностях синхронные двигатели с возбуждением постоянным током не находят применения.
При малых мощностях в случае необходимости получения постоянства скорости вращения (в устройствах автоматики, телемеханики, звукового кино и т. и.) широко используют реактивные синхронные двигатели.
Ротор реактивного синхронного двигателя имеет явно выраженные полюса. При очень малых мощностях ротор делают цилиндрическим из алюминия, в который при отливке закладываются стержни из мягкой стали, выполняющие функцию явно выраженных полюсов (рис. 132). Цилиндрическая форма ротора упрощает его обработку и балансировку, а также снижает потери на трение о воздух при работе машины, что существенно для двигателей очень малых мощностей.
В реактивных синхронных двигателях вращающий момент создается в результате стремления ротора ориентироваться в магнитном поле таким образом, чтобы магнитное сопротивление для этого поля было наименьшим. Поэтому ротор будет всегда занимать такое положение в пространстве, при котором магнитные линии вращающегося магнитного поля статора замкнутся через сталь ротора, так что он будет вращаться вместе с магнитным полем статора.
Наряду с трехфазным широко используют и однофазные реактивные двигатели.
1. Поясните принцип работы синхронного генератора.
2. Каково устройство генератора с явно и неявно выраженными полюсами?
3. Объясните внешние и регулировочные характеристики синхронного генератора.
4. Какие условия необходимо выполнить для включения синхронного генератора в сеть?
5. Объясните принцип работы синхронного двигателя.
6. В чем состоит принцип работы реактивного двигателя?
Как работают синхронные машины?
Статор 1 синхронной машины (рис. 1.1, а) выполнен так же, как и асинхронной: на нем расположена трехфазная (в общем случае многофазная) обмотка 3. Обмотку ротора 4, которая питается от источника постоянного тока, называют обмоткой возбуждения, так как она создает в машине магнитный поток возбуждения.
Рис. 1.1 – Электромагнитная схема синхронной машины (а) и схема ее включения (б):
1 – статор, 2 – ротор, 3-обмотка якоря, 4 – обмотка возбуждения,
5 – контактные кольца, 6 – щетки
Вращающуюся обмотку ротора соединяют с внешним источником постоянного тока посредством контактных колец 5 и щеток 6. При вращении ротора 2 с некоторой частотой n2 поток возбуждения пересекает проводники обмотки статора и индуктирует в ее фазах переменную э. д. с. E (рис. 1.1, б), изменяющуюся с частотой
Если обмотку статора подключить к какой-либо нагрузке, то протекающий по этой обмотке многофазный ток Ia создаст вращающееся магнитное поле, частота вращения которого
Из (1.1) и (1.2) следует, что n1 = n2, т.е. ротор вращается с той же частотой, что и магнитное поле статора. По этой причине рассматриваемую машину называют синхронной. В такой машине результирующий магнитный поток Фрез создается совместным действием м. д. с. обмотки возбуждения и обмотки статора и результирующее магнитное поле вращается в пространстве с той же частотой, что и ротор.
В синхронной машине обмотку, в которой индуктируется э. д. с. и протекает ток нагрузки, называют обмоткой якоря, а часть машины, на которой расположена обмотка возбуждения, – индуктором. Следовательно, в машине, выполненной по конструктивной схеме, представленной на рис. 1.1, статор является якорем, а ротор – индуктором. С точки зрения принципа действия и теории работы машины безразлично, вращается якорь или индуктор, поэтому в некоторых случаях применяют синхронные машины с обращенной конструктивной схемой: обмотка якоря, к которой подключена нагрузка, расположена на роторе, а обмотка возбуждения, питаемая постоянным током, – на статоре.
Синхронная машина может работать автономно в качестве генератора, питающего подключенную к ней нагрузку, или параллельно с сетью, к которой присоединены другие генераторы. При работе параллельно с сетью она может отдавать или потреблять электрическую энергию, т.е. работать генератором или двигателем. При подключении обмотки статора к сети с напряжением Uс и частотой f1 протекающий по обмотке ток создает, так же как в
асинхронной машине, вращающееся магнитное поле, частота вращения которого определяется по (1.2). В результате взаимодействия этого поля с током Iв, протекающим по обмотке ротора, создается электромагнитный момент М, который при работе машины в двигательном режиме является вращающим, а при работе в генераторном режиме–тормозным. Таким образом, в рассматриваемой машине в отличие от асинхронной поток возбуждения (холостого хода) создается обмоткой постоянного тока, расположенной на роторе. Поэтому в установившихся режимах ротор неподвижен относительно магнитного поля и вращается вместе с ним с частотой вращения n1 = n2, независимо от механической нагрузки на валу ротора или электрической нагрузки.
Таким образом, синхронная машина имеет следующие особенности, характерные для установившихся режимов работы:
а) ротор машины, работающей как в двигательном, так и в генераторном режимах, вращается с постоянной частотой, равной частоте вращающегося магнитного поля, т.е. n2 = n1;
б) частота изменения э. д. с. Е, индуктируемой в обмотке якоря, пропорциональна частоте вращения ротора;
в) в обмотке ротора э. д. с. не индуктируется, а ее м. д. с. определяется только током возбуждения и не зависит от режима работы.
мтомд.инфо
Синхронные машины. Конструкция, назначение, области применения.
Раздел: | Электротехника |
Если в асинхронных машинах ротор имел частоту вращения, отличную от частоты вращения магнитного поля статора, то в синхронных эти частоты равны между собой.
Конструкция и назначение синхронных машин
Синхронной машиной называется электрическая машина переменного тока, у которой частота вращения ротора n находится в строгом соответствии с частотой сети f1: n = n1 = 60 f1 / p.
На статоре синхронной машины располагается трехфазная обмотка переменного тока, называемая обмоткой якоря, а на роторе располагается обмотка постоянного тока, называемая обмоткой возбуждения. Существует две основных разновидности исполнения обмоток возбуждения: распределенные и сосредоточенные. Распределенные обмотки применяются при неявнополюсной конструкции ротора (рис. 1). В каждом пазу располагается только одна сторона катушки. Поэтому такая обмотка является однослойной.
Неявнополюсная конструкция ротора
Число катушек на полюсном делении равно qf. Они соединяются последовательно, образуя полное число витков обмотки возбуждения wf = pqfwk, где wk — число витков в катушке.
Неявнополюсную конструкцию ротора имеют быстроходные синхронные машины с 2p=2 и 2p=4. Частота вращения ротора таких машин при f1=50Гц соответственно равна 3000 и 1500 об/мин. Для получения необходимой механической прочности неявнополюсные роторы выполняются из массивной стальной поковки.
Явнополюсная конструкция ротора
В машинах с 2p≥4 ротор имеет явнополюсную конструкцию (рис. 2). Обмотка возбуждения таких машин выполняется сосредоточенной в виде катушек (1) и размещается на сердечниках полюсов (2). Для закрепления катушек на полюсах используются полюсные наконечники (3). Все катушки соединяются последовательно, образуя полное число витков обмотки возбуждения wf = 2pwk.
Для улучшения динамических свойств синхронной машины в полюсные наконечники помещают дополнительную короткозамкнутую обмотку (4), выполняемую аналогично короткозамкнутой обмотке асинхронной машины. Ее называют успокоительной или демпферной. Иногда роль демпферной обмотки выполняют массивные полюсные наконечники.
Область применения синхронных машин
Синхронные машины могут работать как генераторами, так и электродвигателями. Основная область применения синхронных машин — энергетика, где они используются в качестве генераторов электрической энергии. В зависимости от типа привода синхронные генераторы делятся на турбогенераторы, гидрогенераторы и дизельные генераторы.
Турбогенератор, например, — это генератор, приводимый в движение паровой турбиной, гидрогенератор вращает водяное колесо, а дизельгенератор механически связан с двигателем внутреннего сгорания.
Синхронные электродвигатели широко применяют для привода мощных компрессоров, насосов, вентиляторов. Синхронные микродвигатели используют для привода лентопротяжных механизмов регистрирующих приборов, магнитофонов и так далее.
Синхронные электрические машины. Принцип действия
Синхронно (от греч. σύγχρονα, σύγ — вместе, χρονα – время) — используется в русском языке для обозначения (наименования) процессов совпадающих во времени.
Синхронными, в электротехнике, принято называть машины переменного тока, в процессе работы которых частоты вращения ротора и вращающегося магнитного поля статора равны (n2= n1, рис.1,а). Конструктивно ротор синхронных машин выполняется так, что в его обмотках ЭДС. не индуктируется (как в асинхронных, где ЭДС индуктируется полем статорных обмоток), а магнитное поле создаётся как результат протекания постоянного тока подводимого от внешнего источника ЭДС, или с помощью постоянных магнитов.
На рис.1,б изображена схема подключения синхронной электрической машины как двигателя, где при наличии напряжения U1 на статорных обмотках 3 и Uв на обмотке 4 ротора 2 последний будет вращаться. При этом, частота вращения ротора, в установившемся режиме, будет соответствовать частоте вращения магнитного поля создаваемого обмотками статора.
Рис.1. Электромагнитная схема синхронной машины (а) и схема её подключение, как двигателя, к сети трёхфазного тока (б) , где: 1- статор, 2 – ротор, 3 — обмотка статора , 4 — обмотка возбуждения , 5- контактные кольца, 6 – щётки, n2 – частота вращения ротора, n1 – частота вращения магнитного поля статора.
Синхронные машины очень часто применяют не только как двигатели, но и как генераторы. Если вместо внешнего напряжения U1 (рис.1,б ) к выводам обмоток статора подключить нагрузку, а на обмотку ротора подать Uв (посредством контактных колец 5 и щёток 6) и начать его вращать, например соединив его с валом другого двигателя, то как результат пересечения потоком возбуждения ротора проводников обмоток статора на его фазных обмотках начнёт индуктироваться переменная э.д.с.(напряжение) и по нагрузке потечёт ток. Зависимость частоты сгенерированного таким образом напряжения от частоты вращения магнитного потока ротора:
f1 = p x n2 / 60 (1)
где: f1 – частота сгенерированного напряжения; n2 – частота вращения магнитного поля ротора; p – число пар полюсов электрической машины (генератора).
В обмотках статора (при подключённой к ним нагрузке), в свою очередь, начнёт протекать ток создающий вращающееся магнитное поле статора:
n1 = 60 x f1 / p (2)
где: n1 – частота вращающегося магнитного поля статора; f1 – частота сгенерированного в обмотках статора напряжения; p – число пар полюсов электрической машины (генератора).
Из выражений (1) и (2) следует, что n1= n2 а это означает, что частоты вращения ротора и магнитного поля статора равны, т.е. синхронны. Поэтому рассматриваемую нами машину называют синхронной. Для такой машины характерно, что результирующее магнитное поле вращается с той же частотой что и ротор, т.к. результирующий магнитный поток Фрез. создаётся в результате взаимодействий МДС обмотки возбуждения ротора(индуктора) и обмотки статора(якоря).
Для установившихся режимов работы синхронной машины характерны следующие особенности:
- как в двигательном так и в генераторном режимах, ротор машины вращается с частотой равной частоте вращающегося магнитного поля создаваемого статором, то есть n2= n1 (рис.1,а) ;
- частота изменений индуктируемой в обмотках статора(якоря) ЭДС Е , пропорциональна частоте вращения ротора(индуктора);
- в обмотке ротора э.д.с. не индуктируется, а подводится извне, то есть её МДС создаётся от внешнего источника возбуждения Uв и не зависит от режима работы (двигательного или генераторного).
Очень часто вместо обмоток ротора, для создания МДС, используют набор из постоянных магнитов, что исключает необходимость использования внешнего источника возбуждения Uв.
В энергетике, синхронные машины , главным образом, применяют для преобразования механической энергии от первичных двигателей(или турбин) в электрическую энергию переменного тока, то есть в качестве генераторов. В других отраслях большее применение находят двигатели.
Синхронные двигатели бывают: с обмотками возбуждения, с постоянными магнитами, реактивные, гистерезисные, реактивно-гистерезисные, шаговые. Маломощные синхронные микродвигатели широко используют в системах автоматики, бытовых приборах, фотоаппаратах, часах и так далее. Двигатели с постоянными магнитами различной мощности применяют, в следящих приводах систем ЧПУ, в бытовой и автомобильной технике, и так далее.
Трехфазные синхронные машины широко применяют в промышленных установках, а однофазные в приводах компрессоров, вентиляторов, в автоматических приборах и так далее.
По сравнению с асинхронными, синхронные электрические двигатели выгодно отличаются гораздо большей мощностью и полезной нагрузкой. При ударных нагрузках намного лучше, чем асинхронные сохраняют постоянство частоты вращения, что немаловажно, особенно в таких отраслях как металлургия и металлообработка. Синхронные электрические двигатели могут развивать мощность до 20 тыс. киловатт и “более”…
К недостаткам синхронных электрических машин можно отнести их конструктивную сложность, наличие внешнего возбуждения обмоток ротора, сложность запуска “в отдельных случаях”, относительно высокая стоимость.
Синхронные машины
Бесколлекторные двухобмоточные электрические машины, в которой одна обмотка запитана от электрической сети переменного тока с неизменяемым значением частоты, а другая подключена к источнику возбуждения постоянного тока, с одинаковыми скоростями вращения ротора машины и ее магнитного поля. Главная область применения – преобразование механической энергии в электроэнергию.
Типы синхронных машин
Существует несколько разновидностей подобных машин, это:
- Гидрогенератор – его ротор отличается наличием явновыращенных полюсов и используется при производстве электрической энергии, работает на низких оборотах.
- Турбогенератор – отличается неявнополюсной конструкцией генератора, работает при помощи турбин различного типа, скорость отличается большим количеством оборотов вала в минуту, может достигать до 6000 об/мин.
- Компенсатор – он вырабатывает реактивную мощность, не несет нагрузку, используется в целях повышения качества электрической энергии за счет улучшенного коэффициента мощности, служит для стабилизации напряжения.
- Асинхронизированная машина двойного питания – в ней производится подключение роторной и статорной обмоток от источника токов с разной частотой, происходит создание несинхронного режима работы. Отличается устойчивым режимом работы, служит преобразователем фазных токов, применяется для решения узкоспециализированных задач.
- Двухполюсный ударный генератор – работа заключается в использовании режима короткого замыкания, действует кратковременно в течение долей секунды, выполняет задачу для испытания аппаратуры высокого напряжения.
- Синхронные двигатели – подразделяются на ряд моделей, предназначенных для выполнения различных целей, это: шаговые модели, безредукторные, индукторные, гистерезисные, а также бесконтактные двигатели.
Общий принцип действия
По соответствию основному исполнению, статор считается якорем машины и имеет многофазную обмотку, чаще всего, рассчитанную на три фазы. Он выступает в качестве индуктора, обмотка ротора (возбуждения) служит для создания потока магнитной индукции возбуждения, ее питание осуществляется при использовании контактных колец, через щеточный механизм, от источника (якоря возбудителя). Конструктивное исполнение машины, прежде всего, зависит от необходимой частоты вращения, главным образом это сказывается на конструктивных особенностях ротора, он бывает двух основных видов, это явнополюсный и неявнополюсный типы.
Конструктивные особенности явнополюсного ротора
В первом случае, ротор имеет два или более явно выраженных полюса. Стержни (катушки), крепятся в пазах посредством использования клиньев из немагнитного изоляционного материала.
Стержни исполняют функцию обмоток возбуждения. Сердечник изготавливается из электротехнической стали. В полюсных наконечниках располагаются стержни обмотки, предназначенной для пуска, они выполняются из латуни, для которой характерно высокое удельное сопротивление.
Аналогичная обмотка, «беличья клетка», которая имеет в своей конструкции катушки из меди, используется для устройства генераторов, она выполняет демпфирующую роль и выступает успокоителем, потому как способствует снижению неустойчивости ротора, появляющейся во время переходного режима.
Прекращение колебаний происходит после возникновения вихревых токов, появляющихся при замыканиях в роторе с полюсами значительного веса.
Неявнополюсный ротор применяется для конструкций синхронных агрегатов большой мощности. Они отличаются высокими скоростными характеристиками. Число оборотов вала может достигать предела порядка 3000 об/мин.
Этот параметр обуславливает невозможность использования явнополюсного ротора в высокоскоростных машинах в связи с трудностью крепления полюсов и обмоток возбуждения при небольшом количестве пар полюсов.
Магнитопровод ротора изготовлен, как единое целое с валом машины и выполняется из единой поковки. Набор его производится из прочной легированной стали, в пазах осуществляется формирование обмотки из медных с серебряной присадкой проводников, это делается для повышенной термической стойкости.
Возбуждение синхронной машины
Для питания обмотки возбуждения предусмотрено наличие возбудителя, в его качестве выступает генератор постоянного тока, якорь которого сопряжен с валом машины, посредством использования механического устройства.
По способу возбуждения синхронные машины подразделяются на два типа:
- Возбуждение независимого вида.
- Самовозбуждение.
При независимом возбуждении схема подразумевает наличие подвозбудителя, который питает: обмотку главного возбудителя, реостат для регулировки, устройства управления, регуляторы напряжения и т. д. Кроме этого способа, возбуждение может осуществляться от генератора, выполняющего вспомогательную функцию, он приводится в работу от двигателя синхронного или асинхронного типа.
Для самовозбуждения, питание обмотки происходит через выпрямитель, работающий на полупроводниках или ионного типа.
Для турбо- и гидрогенераторов используют тиристорные устройства возбуждения. Ток возбуждения регулируется в автоматическом режиме при помощи регулятора возбуждения. Для синхронных машин малой мощности характерно использование регулировочных реостатов, они включены в цепь обмотки возбуждения.
Принцип работы
Вращающийся с определенной частотой, создаваемый ротором, поток возбуждения, пересекает витки статорной обмотки, он совершает индуцирование в фазах с переменной ЭДС, изменяемой с частотой, определяемой по формуле:
При присоединении статора к нагрузке, ток в обмотке создает магнитное поле, вращающееся со скоростью одинаковой со скоростью вращения ротора. Магнитодвижущая сила обмоток возбуждения и статорной обмотки, и результирующие вращающегося магнитного поля, создают результирующий магнитный поток.
Синхронные машины высокой мощности – конструктивные особенности
Ввиду использования значительной величины мощности, синхронная установка подвергается значительному механическому воздействию, а также электромагнитной нагрузке, вследствие чего происходит существенный нагрев различных частей машин, для чего необходимо выполнить интенсивное охлаждение машины. Чтобы сохранить определенные габаритные размеры, для получения необходимого значения мощности, выполняют машины с различными особенностями, диктующими подразделение машин на несколько типов, это: турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы, синхронные двигатели.
Турбогенераторы
Конструкция машины исполнена с горизонтальной осью и работает за счет использования турбины, ротор обязательно неявнополюсного исполнения. Скорость вращения вала отличается максимально возможным числом оборотов вращения и составляет 3000 об/мин.
За счет того, что в машине всего два полюса, ее конструктивная часть отличается уменьшенными габаритами и весом. При использовании такого агрегата на АЭС, применяют машины с количеством оборотов вала 1500 об/мин, с 4 полюсами, диаметр ротора меньше длины его активной части. Система, используемая для охлаждения, применяет поверхностный и косвенный принудительный обдув, иногда применяют косвенное водородное или водяное и масляное охлаждение.
Гидрогенераторы
Функционирование гидрогенератора осуществляется при использовании гидравлической турбины, обладающей невысоким количеством оборотов вала от 50 до 500 об/мин. Ротор явнополюсного исполнения отличается наличием большого числа пар полюсов. Его диаметр для некоторых типов гидрогенераторов может доходить до 16 м., тогда как длина составляет всего 1,75 м. Его мощность достигает 640 МВ*А.
Вал может располагаться вертикально. Гидрогенератор и турбина объединены одним валом ротора, также на нем может быть установлен возбудитель, подвозбудитель и синхронный генератор, который осуществляет питание электрических двигателей, предназначенных для регулировки турбины. Главное усилие в машине приходится на опорный подшипник, он способен выдержать вес роторов всего оборудования, динамические усилия и давление воды, приложенное к турбинным лопастям. Система охлаждения в устройствах этого типа выполняется с помощью омывания капсулы, в которую заключены объединенные одним валом элементы синхронного агрегата.
Синхронный компенсатор
Машина генерирует реактивную мощность и работает в двигательном режиме холостого хода, использующего активную сетевую нагрузку. Конструкция явнополюсного исполнения обычно присутствует до восьми пар полюсов. Ротор изготовлен облегченным, так как на валу отсутствует какая-либо нагрузка. Часто используется герметизированная конструкция машины, без вывода наружу вала компенсатора, система охлаждения работает за счет использования водорода, закаченного при большом давлении, внутрь.
Дизель-генератор
Машина имеет в своей конструкции явнополюсный ротор и подразумевает горизонтальную установку вала. Особенность – использование одного опорного подшипника, в качестве второй опоры используется подшипник вала генератора. На едином с ними валу установлен возбудитель.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.
Мир науки
Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!
Физика — рефераты, конспекты, шпаргалки, лекции, семинары
Синхронные машины
Машина называется синхронной, если частота вращения связана постоянным отношением с частотой f сети переменного тока, в которую эта машина включается. Такие машины применяют в качестве генераторов переменного тока промышленной частоты, синхронных двигателей, когда нужен двигатель, который работает при постоянной частоте вращения.
Синхронная машина состоит из статора и ротора, при этом статор похож на статор асинхронной машины. Сердечник статора собирается из листов электротехнической стали, которые изолированы друг от друга, и укрепляется внутри массивного корпуса. В пазах внутри статора размещается обмотка переменного тока, которая чаще всего является трехфазной.
Ротор синхронной машины является электромагнитом с неявно выраженными полюсами или с явно выраженными полюсами. На обмотку возбуждения ток поступает через контактные кольца и щетки от внешнего источника постоянного тока, который называют возбудителем.
Многополюсная синхронная машина содержит ротор с р парами полюсов. Токи в обмотке статора формирует р пар полюсов магнитного поля, совершающего вращения. Ротор вращается с частотой вращения магнитного поля, т. е. его скорость. Синхронные двигатели широко применяют для разных видов привода, которые работают с постоянной частотой вращения. Чаще всего данные двигатели являются явно полюсными мощностью от 40 до 7500 кВт, с частотами вращения от 125 до 1000 об/мин.
Двигатели и генераторы отличаются наличием на роторе дополнительной короткозамкнутой обмотки или подобного приспособления. Также различие выражается в меньшем воздушном зазоре между статором и ротором. Синхронные двигатели имеют КПД выше, чем асинхронный двигатель той же массы.
Для синхронных машин иногда используются те же названия, как и в машинах постоянного тока: якорем называют часть, в обмотке которой индуктируется э. д. с., т. е. в синхронных машинах статор является якорем. Индуктором, который возбуждает главный магнитный поток, в синхронной машине является ротор.
Важное отличие синхронной и асинхронной машин заключается в том, что главный магнитный поток в ней создает намагничивающая сила постоянного тока возбуждения, получаемого машиной от возбудителя. Поэтому синхронная машина при работе в режиме двигателя может не загружать сеть намагничивающим током. Чаще всего в качестве возбудителей применяются небольшие генераторы постоянного тока с самовозбуждением или генераторы с независимым возбуждением от подвозбудителя.
Синхронная машина является обратимой, т. е. может работать как двигатель и как генератор. Машина переходит из режима генератора к режиму двигателя в зависимости от действия на ее вал вращающей или тормозящей механической силы. Если действует вращающая сила, машина получает на валу механическую энергию, которую он перерабатывает в электрическую. Если действует тормозящая сила, машина потребляет из сети электрическую энергию перерабатывает ее в механическую.
Для синхронного генератора рабочий процесс определяется тем, связана ли его частота и э. д. с. с частотой тока в сети, которая питается другими синхронными генераторами, или он работает независимо и сам задает частоту тока в сети.
При независимой работе частота сети изменяет значение вместе с частотой вращения первичного двигателя, который вращает синхронный генератор. При этом э. д. с, которые индуктируются в обмотках статора, при подключении нагрузки создают токи в обмотках статора. Эти токи взаимодействуют с магнитным полем машины и создают тормозящую силу, преодолевающую первичный двигатель. При увеличении нагрузки генератора увеличивается и тормозящая сила, приводящая к преобразованию механической мощности первичного двигателя в электрическую мощность, которая отдается в сеть.
Когда синхронный генератор работает параллельно с сетью, которая питается другими генераторами, частота машины соответствует частоте сети. Однако для того чтобы частота машины была постоянной, необходимо постоянно синхронизировать часто- ту вращения ротора, чтобы индуктируемая им э. д. с. Совпадала с изменениями напряжения внешней сети.
Поле ротора, которое является главным магнитным полем, возбуждается постоянным током, но, кроме него, трехфазная система переменных токов статора образует свое магнитное поле. Генераторный режим машины характеризуется опережением ротором поля статора, при котором взаимодействие токов статора и поля машины создает механическую силу, которая тормозит вращение ротора; эту силу необходимо преодолевать первичному двигателю машины.
В случае параллельной работы синхронной машины с другими синхронными машинами, для того чтобы включить машины в общую сеть, нужна предварительная синхронизация. Она заключается в том, чтобы приравнять частоту вращения машины с частотой сети. При этом э. д. с. машины должна быть равна по величине и противоположна по фазе напряжению сети. В случае идеальной синхронизации машины и сети токи в обмотках статора после включения машины на параллельную работу станут равными в результате того, что поле ротора индуктирует в обмотках статора э. д. с., которые уравновешивают полностью напряжение сети. При этом синхронная машина не будет отдавать энергию в сеть и не будет потреблять ее. Таким образом, машина не является ни генератором, ни двигателем. Потери такой машины, механические и магнитные, при этих условиях покрывает первичный двигатель, т. е. чтобы синхронная машина, которая включена в сеть, работала как генератор, отдавая в эту сеть энергию, нужно увеличить механический момент, приложенный первичным двигателем к валу машины.
Устройство и принцип работы синхронного генератора
Синхронным генератором (СГ) называют устройство, выполняющее функцию трансформации механической энергии в электрическую. Принцип работы и устройство синхронного генератора достаточно просты и надежны. Такое энергетическое оборудование востребовано для использования в мобильных авторемонтных мастерских, для ремонта и обслуживания станков-качалок, спецмашин нефтегазовой отрасли, на ГЭС, ТЭС, АЭС, в транспортных системах.
Основные конструктивные элементы
В конструкцию статора входит корпус, внутри которого расположен сердечник, или пакет, собираемый из листов электротехнической стали особой формы. На качество электрического тока влияют такие факторы как: цельность листов в пакете (бывают цельными или составными), качество и материал обмотки. Для обмотки применяется медный эмаль-провод, а в дешевых устройствах возможна замена меди на алюминий.
Роторы изготавливаются явнополюсными или неявнополюсными.
- Явнополюсные роторы предназначены для синхронных генераторов, работающих с двигателями внутреннего сгорания с низкой частотой вращения — 1500 и 3000 об/мин.
- Неявнополюсные роторы востребованы в высокоскоростных (более 3000 об/мин) механизмах переменного электрического тока высокой мощности. Обычно их размещают на одном валу с паровыми турбинами. Такие СГ называют «турбогенераторы».
Определение скорости вращения
Понятие «синхронный» означает, что число оборотов находится в прямой математической зависимости от частоты тока. Эта зависимость определяется по формуле n = 60*f/p, где:
- n — скорость вращения, об/мин;
- f — частота, в бытовой электрической сети она равна 50 Гц;
- p — количество пар полюсов.
Принцип работы СГ
Принцип действия машины в режиме синхронного генератора:
- При пропускании через обмотку возбуждения постоянного тока образуется стабильное во времени магнитное поле с чередующейся полярностью.
- При вращении магнитного поля относительно проводников обмотки якоря возбуждаются переменные ЭДС.
- Переменные ЭДС суммируются, образуя ЭДС фаз. Трехфазная система образуется тремя одинаковыми обмотками, размещаемыми на якоре под электрическим углом друг к другу, равным 120°.
В случаях, если централизованное электроснабжение имеет недостаточную мощность или отсутствует, как, например, на удаленных стройплощадках, нефтегазодобывающих объектах, морских и воздушных судах, СГ в составе с двигателем внутреннего сгорания функционируют в автономном режиме. При необходимости создания мощных источников питания синхронные двигатели включают на параллельную работу. Такой способ включения позволяет более полно использовать мощность каждой машины и при необходимости выводить отдельные СГ в ремонт без прекращения эффективного электроснабжения потребителей.
Второй режим работы синхронной машины — выполнение функций электродвигателя. Обычно СГ востребован в качестве двигателя в высокомощных установках более 50 кВт. Для работы в режиме электродвигателя обмотку статора подключают к электросети, а обмотку ротора — к источнику постоянного тока. Вращающий момент возникает при взаимодействии вращающегося магнитного поля СГ с постоянным током обмотки возбуждения.