17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и принцип работы термопар

Термопара и термоэлектрические явления

Их используют в промышленности, медицинской технике, научных исследованиях, в системах автоматики и телемеханики.

Принцип работы термопары и ее устройство

Принцип действия всех термоэлектрических преобразователей базируется на эффекте Зеебека еще называемый термоэлектрическим эффектом. Между соединёнными различными проводниками образуется контактная разность потенциалов; если стыки проводников проводников находятся при одинаковой температуре, сумма их разностей потенциалов нулевая. Если стыки оказываются при разных температурных условиях, между ними появляется напряжение зависящее от температурной разности. Коэффициент пропорциональности получил название коэффициентом термо-ЭДС. У разных металлов он различный и, соответствует, разности потенциалов, образующейся между концами различных проводников.


Принцип действия термоэлектрического преобразователя

Так например, разместив металлический спай с отличными от нуля коэффициентами термо-ЭДС в определенную среду с температурой Т1, мы получим разность потенциалов между противоположными контактами, находящимися при Т2. При этом образующее напряжение будет прямо пропорционально разности температур Т1 и Т2.

В основном используются два способа подсоединения термопары к измерительным устройствам: простой и дифференциальный. В простом случае измерительный прибор подсоединяется напрямую к двум термоэлектродам. При дифференциальном способе применяются два проводника с различными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительное устройство подключается в разрыв одного из проводников.

Термопары преимущества:

Термопары недостатки:

Наиболее точными являются термопары с электродами сделанными из благородных металлов: платинородий-платинородиевые ПР и платинородий-платиновые ПП. Их главным плюсом является значительно более низкая термоэлектрическая неоднородность, чем у их неблагородных коллег, устойчивость к окислению и отличная стабильность работы. К достоинству типа ПР можно также отнести практически нулевой выходной сигнал при температурах до 50 °С, т.е устраняется необходимость термостатирования холодных спаев. А главным минусом можно считать их огромную цену и достаточно низкую чувствительность (около 10 мкВ/К при 1000 °С), хотя они и превосходят по точности и стабильности неблагородные термопары.

Кроме того иногда используют термопары из чистых металлов: платина-палладиевые и золото-платиновые. Их главное отличие более лучшая стабильность и точность по сравнению с платинородий-платиновыми аналогами.

Старейшие температурные датчики из неблагородных металлов нашли широкое применение в промышленности. Они стоят копейки устойчивы к вибрациям, и просты в использовании, при необходимости могут изготавливаться во взрывозащищенном исполнении. Их главным плюсом является отличная чувствительность. Серьезным минусом можно считать образование термоэлектрической неоднородности в зоне максимума температурного градиента, что может привести к погрешностям в градуировке более чем 5 °С.

Для измерения высоких температурных значений уровнем до 2500 °С применяют вольфрам-рениевые термопары. Их главной особенностью является необходимость устранения окислительной атмосферы, разрушающей металлическую проволоку. Для вольфрам-рениевых изделий применяют специальные герметичные чехлы, заполненные специальным инертным газом, а также молибденовые и танталовые чехлы с неорганической изоляцией из оксидов магния и бериллия.

Главной особенностью работы с термопарами является использование стандартных компенсационных и удлинительных проводов. Благодаря этому можно передавать сигнал даже на сотни метров к измерительному устройству, внося минимальную погрешность измерений. Удлинительные провода делают из того же самого материала, что и термоэлектроды, но с изкими требованиями к качеству используемых материалов.

Компенсационные производят из совершенно других материалов, так например, для типа ПР в роли компенсационной может выступать медный провод.

Термопары из неблагородных металлов принцип действия

Тип S (платнородий-платиновая) и Тип R (платинородий-платинородиевые термопары)
Максимальная рабочая температура 1350 °С, Кратковременная до 1600 °С;
Может использоваться в окислительной атмосфере
Не рекомендовано применение при температурах ниже 400 °С, т.к ТЭДС в этом интервале крайне мал и сильно не линеен.
Тип В (платнородий-платинородиевая термопара)
Рекомендуемый максимум температур — 1500 °С, кратковременное использование до 1750 °С;
Способна загрезняться при температурах более 900 °С кремнием, водородом, парами железа меди и, но эффект этот ниже, чем для типа S и R;
Возможно применение в окислительной среде

Не рекомендуется использование при температурах ниже 600 °С.

Особенности принципов преобразования и передачи сигнала в термопарах приводят к следующим вероятным проблемам при их работе, вызывая погрешность в определении температуры

Формирование спая имеется много различных вариантов формирования рабочего спая термопары: пайка, механическое скручивание, сварка и т.п. При сварке в спай попадает третий метал, но т.к. температуры проводников, исходящих из спая одинаковы, это не должно привести к погрешности. Проблема состоит в том, что третий метал, обычно, имеет более низкую температуру плавления и при высоких температурах из-за этого спай может разорваться. Кроме того, идет загрязнение электродов чужеродным испаряющимся металлом. Поэтому необходимо осуществлять сварку рабочего спая. Однако процесс такой сварки тоже требует пристального внимания, т.к. перегрев может испортить термопарную проволоку и газ. Дефектная сварка со временем приведет к разрыву спая при эксплуатации. В программном коде современной измерительной технике должен быть специальный тест на разрыв спая.

Образование термоэлектрической неоднородности. Искажение градуировочной характеристики это наиболее существенный и плохо диагностируемый источник погрешности, т.к. действительный результат отсчета ТЭДС может показаться вполне приемлемым и в то же время быть не правильным. Термоэлектрическая неоднородность может возникать из-за диффузии примесей из окружающей атмосферы при больших температурах. Она может появляться из-за протягивания электродов, вибраций и ударов, вызывающих напряжения в проволоке. Изменение состава сплава может возникнуть на небольшом участке проволоки, находящимся длительное время в зоне резкого градиента температур. Один из действенных способов снижения данной погрешности – сделать более плавным изменение температуры на длине термоэлектрода, например, применяя металлические чехлы и рукава.

Сопротивление изоляции электродов термопары снижается с ростом температуры в соответствии с экспоненциальным закоомну. При значительной температуре, в отдельных моментах, этот эффект может образовать «виртуальный» спай, т.е. фактическое замыкания термоэлектродов в средней точке. Поэтому, такой термодатчик будет измерять температуру не в области рабочего спая, а лишь температуру в средней области. При более высоких температурах необходимо также тщательно подобрать материал для изоляции, т.к. химические вещества и примеси изоляции могут попасть в электроды и изменить их характеристики.

Некоторые вещества, используемые в некоторых видах изоляции, могут вызвать появление электролита при попадании воды. Это может привести в гальваническому эффекту, который по силе даже превышает эффект Зеебека. Поэтому необходимо всегда принять меры для защиты термопарной проволоки от вредной атмосферы и проникновения жидкостей.

Тепловое шунтирование. Термопара при введении в объект измерения, непосретственно оказывает действие и на его температуру. Поэтому, если объект измерения мал, термопара тоже должна иметь небольшие размеры.

Что такое термопара и как она работает

Термопары существуют благодаря такому явлению, как контактная разность потенциалов. Если два разных твердых проводника или полупроводника привести в плотный контакт друг с другом, то в окрестности места их соприкосновения образуются разделенные электрические заряды. При этом на внешних концах данных проводников возникнет разность потенциалов. Эта разность потенциалов окажется равна разности работ выхода для каждого металла, поделенной на заряд электрона

Понятно, что если сомкнуть такую пару в кольцо, то результирующая ЭДС будет равна нулю, а если с одной стороны ее все же оставить разомкнутой, то будет иметь место реальная ЭДС, величиной от десятых долей вольта до единиц вольт, в зависимости от того, что это за материалы.

Конечно, вольтметром измерить контактную разность потенциалов не удастся, однако на вольт-амперной характеристике она себя проявит, так например она проявляет себя в транзисторе и в диоде на p-n переходе.

Суть в том, что при соприкосновении, к примеру, двух металлов, система выходит из равновесия потому что химические потенциалы этих двух металлов не равны друг другу, в результате происходит диффузия электронов в сторону уменьшения их энергии, что в свою очередь приводит к изменению заряда и электрического потенциала приведенных в контакт металлов. Так в приконтактной области начинается рост электрического поля, и как следствие мы имеем то, что имеем.

Если теперь снова рассмотреть два этих проводника из разных металлов, только замкнутых в кольцо, когда суммарная ЭДС по замкнутому контуру станет равна нулю, то здесь получится два контактных места. Назовем эти места спаями.

Итак, есть два спая двух разных проводников. Что если попробовать подогреть один из спаев, а второй оставить при комнатной температуре? Очевидно, что поскольку соединенные металлы разные, и в каждом спае присутствует контактная разность потенциалов, то спаи будут испытывать разное отклонение ЭДС, находясь при разных температурах.

Эксперимент доказывает, что разность потенциалов между спаями будет пропорциональна разности их температур, так что можно ввести коэффициент пропорциональности, который называют термо-ЭДС. Для различных термопар термо-ЭДС будет разной.

Если в разрезе такого кольца измерить напряжение, то в определенном интервале температур оно окажется почти строго пропорционально разности температур спаев. И даже если оставить только один спай (как на рисунке), и лишь его подогревать, а напряжение измерять между двумя концами, находящимися при одной и той же комнатной температуре, то все равно можно обнаружить очень четкую зависимость ЭДС от текущей температуры спая. Так и работают термопары.

Описанное явление относится к термоэлектрическим, а сам эффект, на базе которого работают все термопары, называется эффектом Зеебека, в честь его первооткрывателя — Томаса Зеебека. Сегодня можно встретить промышленные термопары, у которых, в зависимости от требуемого измеряемого диапазона температур, электроды изготавливают из специально подобранных сплавов.

К примеру термопары из сплавов хромель и алюмель имеют коэффициент термо-ЭДС, равный 40 микровольт на °C, и предназначены для измерения температур в диапазоне от 0 до +1100°C. А пара медь-константан, столь популярная в качестве демонстрационного пособия, позволяет измерять температуры от -185 до +300°C.

Ее термо-ЭДС сильно зависит от конкретной разности температур, поэтому для оценки ее параметров удобно пользоваться таблицей, например при температуре холодного спая в 0°C, при разности температур в 100 градусов, разность потенциалов медно-константановой пары будет приблизительно равна 4,25мВ.

Термоэлектрические преобразователи (термопары)

Принцип работы термопары

Еще в 1821 г. Зеебеком было открыто явление, названное его именем, заключающееся в том, что в состоящей из разных проводниковых материалов замкнутой цепи появляется э. д. с. (так называемая термо-э. д. с), если места контакта этих материалов поддерживаются при разных температурах.

В простейшем виде, когда электрическая цепь состоит из двух различных проводников, она носит название термоэлемента, или термопары .

Сущность явления Зеебека заключается в том, что энергия свободных электронов, обусловливающих возникновение электрического тока в проводниках, различна и по-разному изменяется с температурой. Поэтому если вдоль проводника имеется перепад температур, на его горячем конце электроны будут иметь большие энергии и скорости по сравнению с холодным, что обусловит возникновение в проводнике потока электронов от горячего конца к холодному. В результате на обоих концах будут накапливаться заряды — отрицательный на холодном и положительный на горячем.

Так как у разных проводников эти заряды различны, то при соединении двух из них в термоэлемент появится разностная термо-э. д. с. Для анализа проходящих в термоэлементе явлений удобно считать, что образующаяся в нем термо-э. д. с. Е является суммой двух контактных электродвижущих сил е, возникающих в местах их контакта и являющихся функцией температуры этих контактов (рис. 1,а).

Рис. 1.Схема термоэлектрической цепи из двух и трех проводников, схема включения электроизмерительного прибора в спай и термоэлектрод термопары.

Термоэлектродвижущая сила, возникающая в цепи из двух разнородных проводников, равна разности электродвижущих сил на их концах.

Из этого определения следует, что при равенстве температур на концах термоэлемента его термо-э. д. с. будет равна нулю. Отсюда может быть сделан чрезвычайно важный вывод, обусловливающий возможность использования термопары, как датчика для измерения температуры.

Электродвижущая сила термопары не изменится от введения в ее цепь третьего проводника, если температуры на его концах будут одинаковыми.

Этот третий проводник может быть включен как в один из спаев, так и в разрез одного из проводников (рис. 1,6,в). Этот вывод может быть распространен и на несколько проводников, вводимых в цепь термопары, лишь бы температуры на их концах были одинаковы.

Поэтому в цепь термопары можно включить измерительный прибор (также состоящий из проводников) и ведущие к нему соединительные провода, не вызвав изменения развиваемой ею термо-э. д. с, если только температуры точек 1 и 2 или 3 и 4 (рис. 1, г и д) будут равны. При этом температура этих точек может отличаться от температуры на выводах прибора, но температура обоих выводов должна быть одинакова.

Если сопротивление цепи термопары будет оставаться неизменным, то проходящий в ней ток (а следовательно, и показание прибора) будет зависеть только от развиваемой ею термо-э. д. с, т. е. от температур рабочего (горячего) и свободного (холодного) ее концов.

Далее, если поддерживать неизменной температуру свободного конца термопары, показание прибора будет зависеть только от температуры рабочего конца термопары. Такой прибор будет показывать непосредственно температуру рабочего спая термопары.

Таким образом, термоэлектрический пирометр состоит из термопары (термоэлектродов), электроизмерительного прибора постоянного тока и соединительных проводов.

Из вышесказанного можно сделать следующие выводы.

1. Способ изготовления рабочего конца термопары (сварка, пайка, скрутка и т. д.) не влияет на развиваемую ею термо-э. д. с, если только размеры рабочего конца таковы, что температура во всех его точках одинакова.

2. Так как параметром, измеряемым прибором, является не термо- э. д. с, а ток цепи термопары, не обходимо, чтобы сопротивление цепи в эксплуатации оставалось неизменным и равным его значению при градуировке. Но так как осуществить это практически невозможно потому, что сопротивление термоэлектродов и соединительных проводов меняется с изменением температуры, возникает одна из принципиальных погрешностей метода: погрешность от несоответствия сопротивления схемы ее сопротивлению при градуировке.

Для уменьшения этой погрешности приборы для тепловых измерений выполняются высокоомными (50—100 Ом при грубых измерениях, 200—500 Ом при более точных) и с малым температурным электрическим коэффициентом, с тем чтобы суммарное сопротивление схемы (а следовательно, и связь между током и термо-э. д. с.) менялось в минимальной степени при колебаниях окружающей температуры.

3. Термоэлектрические пирометры градуируются всегда при вполне определенной температуре свободного конца термопары — при 0°С. Обычно в работе эта температура отличается от градуировочной, в результате этого возникает вторая принципиальная погрешность метода: погрешность на температуру свободного конца термопары.

Так как эта погрешность может достигать десятков градусов, то необходимо в показания прибора вносить соответствующую поправку. Эта поправка может быть высчитана, если известна температура свободных концов.

Так как температура свободного конца термопары при градуировке to равна 0°С, а в эксплуатации она, как правило, выше 0°С (свободные концы находятся обычно в помещении, часто они расположены близко к печи, температура которой замеряется), то пирометр дает заниженное против действительной измеряемой температуры показание и значение последнего надо увеличить на величину поправки.

Обычно это осуществляется графическим путем. Это вызывается тем, что обычно отсутствует пропорциональность между термо-э. д. с. и температурой. Если же зависимость между ними пропорциональная, то градуировочная кривая представляет прямую линию и в этом случае поправка на температуру свободного конца термопары будет равна непосредственно его температуре.

Конструкция и типы термопар

К материалам для термоэлектродов предъявляются следующие требования:

1) высокая термо-э. д. с. и близкий к пропорциональному характер ее изменения от температуры;

2) жаростойкость (неокисляемость при высоких температурах);

3) неизменяемость физических свойств с течением времени в пределах измеряемых температур;

4) высокая электрическая проводимость;

5) малый температурный коэффициент сопротивления;

6) возможность производства в больших количествах с неизменными физическими свойствами.

Международная электротехническая комиссия (МЭК, International Electrotechnical Commission — IEC) определила некоторые стандартные типы термоэлементов (стандарт IEC 584-1). Элементы имеют индексы R, S, В, K, J, Е, Т в соответствии с диапазоном измеряемых температур.

В промышленности термопары используют для измерения высоких температур, до 600 — 1000 — 1500˚С. Промышленная термопара состоит из двух тугоплавких металлов или сплавов. Горячий спай (обозначен буквой «Г») помещается в место измерения температуры, а холодный спай («Х») находится в зоне, где находится измерительный прибор.

В настоящее время применяются следующие стандартные термопары.

Платинородий-платиновая термопара. Эти термопары могут быть применены для измерения температур до 1300°С при длительном применении и до 1600 °С при кратковременном, при условии их использования в окислительной газовой среде. При средних температурах платинородий-платиновая термопара зарекомендовала себя как очень надежная и стойкая, поэтому она применяется как образцовая в интервале 630 — 1064°С.

Хромель-алюмелевая термопара. Эти термопары предназначены для измерения температур при длительном применении до 1000 °С и при кратковременном — до 1300°С. Они надежно работают в этих пределах в окислительной атмосфере (если отсутствуют агрессивные газы), так как на поверхности электродов при нагреве образуется тонкая защитная пленка окислов, препятствующая проникновению кислорода в металл.

Хромель-копелевая термопара . Эти термопары позволяют измерять температуры длительно до 600°С и кратковременно до 800 °С. Они успешно работают как в окислительной, так и в восстановительной атмосфере, а также в вакууме.

Железо-копелевая термопара . Пределы измерений — те же, что и хромель-копелевых термопар, условия работы — такие же. Она дает меньшую термо-э. д. с. по сравнению с термопарой ХК: 30,9 мВ при 500 °С, но ее зависимость от температуры ближе к пропорциональной. Существенным недостатком термопары ЖК является коррозия ее выполненного из железа электрода.

Медь-копелевая термопара . Так как медь в окислительной атмосфере начинает интенсивно окисляться уже при 350°С, то пределы применимости этих термопар — 350 °С длительно и 500 °С кратковременно. В вакууме эти термопары можно применять до 600 °С.

Кривые зависимости термо-э. д. с. от температуры для наиболее распространенных термопар. 1 — хромель-копелевая; 2 — железо-копелевая; 3 — медь-копелевая; 4 — ТГБЦ-350М; 5 — ТГКТ-360М; 6 — хромель-алюмелевая; 7 — платинородий-платиновая; 8 —ТМСВ-340М; 9 — ПР-30/6.

Сопротивление термоэлектродов стандартных термопар из неблагородных металлов составляет 0,13 — 0,18 Ом на 1 м длины (в оба конца), для платинородий-платиновых термопар 1,5—1,6 Ом на 1 м. Допустимые отклонения термо-э. д. с. от градуировочных для неблагородных термопар составляют ±1%, для платинородий-платиновых ±0,3—0,35%.

Стандартная термопара представляет собой жезл диаметром 21—29 мм и длиной 500 — 3000 мм. На верхней части защитной трубы надета штампованная или литая (обычно из алюминия) головка с карболитовой или бакелитовой пластиной, в которую запрессованы две пары выводов с винтовыми зажимами, соединенные попарно. В один из выводов зажат термоэлектрод, к другому присоединен соединительный провод, ведущий к измерительному прибору. Иногда соединительные провода заключаются в гибкий защитный шланг. При необходимости герметизировать отверстие, в котором устанавливается термопара, последняя снабжается штуцером с резьбой. Для ванн термопары выполняются также коленчатой формы.

Закон внутренних температур: Наличие температурного градиента в однородном проводнике не приводит к возникновению электрического тока (никакой дополнительной ЭДС не возникает).

Закон промежуточных проводников: Пусть два однородных проводника из металлов А и В образуют термоэлектрическую цепь с контактами, имеющие температуры T1 (горячий спай) и T2 (холодный спай). В разрыв проводника А включается проводник из металла Х и образуется два новых контакта. «Если температура проводника Х одинакова по всей длине, то результирующая ЭДС термопары не изменится (от дополнительных спаев не возникает ЭДС)».

Термопара

Международный стандарт на термопары МЭК 60584 дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары, соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Прибор термопара фото

Термопара принцип действия

Работа термопары основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Применение термопар

Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

В 1920-х — 1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Термопара ТХА, ТХК, хромель-алюмель, ТПП: принцип работы

Практически каждое отопительное оборудование требует применения дополнительных элементов, предостерегающих систему от перегрева. Одним из таких контролеров считается термопара. Принцип ее работы заключается в регулярном измерении температурного режима для поддержания заданного значения.

Общие характеристики

Согласно Номинальных статических характеристик преобразования ГОСТ Р8.585-2001 термопара – устройство, состоящее из 2-х разнородных контактирующих друг с другом проводников, предназначенное для измерения температуры. При изменении температурного режима на одном участке создается напряжение, вследствие чего происходит конвертация температуры в электроток.

Конструкция элемента устроена из двух разнотипных проводников, которые соединяются друг с другом в одном узле. Существует три типа соединений:

  • спайка;
  • ручная скрутка;
  • сварка.

Зачастую в виде проводящих электроэнергию элементов применяется металлический проводник, однако встречаются случаи, когда вместо него используют полупроводниковые устройства.

Параметры устройства определяет материал, из которого изготовлены проводники. Понятно, что любой металл образует сопротивление, значит будет производить электроток. Но для корректной работы термопары используются определенные сплавы, которые выдают прогнозируемые вводные и точно с минимальной погрешностью определяют зависимость между температурой и сопротивлением. Для определенного диапазона должен использовать определенный материл.

Говоря простым языком, термопара, в зависимости от материалов, из которых состоят проводники, позволяет определять температурный режим в разнообразных диапазонах значений. В целом, термопара определяет температуру ориентировочно от -250°С до +2 000°С.

ВИДЕО: Измерение температуры с помощью термопары

Принцип действия термопары

Вне зависимости от имени производителя, работа всех термопар основывается на термоэлектрической схеме, разработанной в 1821 году известным физиком Т.И. Зеебеком. Принцип действия термопары заключается в поочередном соединении двух разновидных переходника в одно замкнутое кольцо. Первый узел предназначен для нагрева, в результате чего, по кольцу образовывается электрический движущий заряд, который называется – термо-ЭДС. Под влиянием ЭДС-силы, по цепочке протекает электрически ток.

Схематическая работа устройства

Сама область нагрева называется узлом нагревательного предназначения, второй конец обозначается как холодный спай.

Чтобы измерить значение микро или милливольт электрической движущей силы, следует разъединить кольцо и соединить его при помощи микровольтметра. Количество милливольт полностью зависит от интенсивности нагрева соединений и температурного режима холодного узла. Принцип работы простым языком базируется на разности значений температуры двух соединительных спаев, между холодным и горячим обозначением.

Получается, что если область спая двух разных проводов нагреть, то в зоне несоединенных концов образуется разносторонний потенциал, измеряемый специальным инструментом. Преобразователи, разработанные по инновационным технологиям, возникшую разность электрической силы переводят в цифровые символы, обозначающие температурный режим нагрева соединенных узлами частей.

Конструкция устройства

Устройство производится разных форм и размеров. Подразделяется по конструктивному производству на два основных типа:

  • термопары, не имеющие корпуса;
  • с кожухом, служащим в качестве защиты.

В первом случае устройство в месте соединения не имеет закрытого корпуса, выполняющего защитную функцию от разнообразных воздействий внешней окружающей среды. Данный вид обеспечивает быстрое определение инертности и температурного режима, не затрачивая на процесс много времени.

Термопара для котельного оборудования

Второй тип производится подобно зонду, который выполнен из металлической трубы с хорошей внутренней изоляцией, способной противостоять высоким температурным показателям. Изнутри термопар оснащен термоэлектрической системой. Конструкция с защитным корпусом не поддается воздействиям агрессивной среды.

Разновидности термопары

Принцип работы термопара достаточно прост и понятен, однако, прежде чем создать устройство своими руками, следует знать, чем отличаются такие модификации как ТХА,TKX, ТПП, ТСП, ТПР и ТВР, а также, по каким критериям и группам они распределяются.

  • Группа Е – состоит из комбинированного материала — хромель-константан. Соединительный спай обладает повышенной производительностью – более 69 мкВ/ о С, подходящей для криогенного применения. Помимо всего, система не имеет магнитные свойства, а температурный режим варьируется от – 50°С до + 740°С.
  • Группа J – термоэлектроны производятся из положительного железа и отрицательного типа константаны. Разбег функционирования данной серии термопара меньше, чем в прошлой группе -40°С — + 750°С, однако показатель чувствительности более высокий – 50 мкВ/°С.
  • Группа К – самый распространенный тип устройств, состоящий из комбинации материалов – алюминий и хромель. Производительность системы равняется 40 мкВ/°С, функционирование происходит в пределах температурных показателей от – 200°С до 1 350°С. Следует помнить, что даже при низком уровне окисления в диапазоне температуры 800-1050°С, элемент из хромеля отсоединяется и приобретает намагниченное состояние, что называется «зеленая гниль». Данный фактор отрицательно сказывается на функционировании регулятора.
  • Группа М – применяется в комплектациях печей вакуумного вида. Рабочие силы варьируются от -260 до + 1400°С с максимальной погрешностью в 2 градуса.

Принцип работы термопары

  • Группа N – устройство выпускается для использования в устройствах обладающих температурными обозначениями – 270 и 1300°С, что является гарантией хорошей работоспособности и устойчивости перед окислительными процессами. Чувствительность не превышает 40 мкВ/°С.
  • Группы В, S, R отличаются стабильной работой с более пониженным ЭДС – 10мкВ/°С. Из-за плохой чувствительности, используется исключительно для определения повышенных температур.
  • Группы В, С, S – первый символ обозначает модификацию, подходящую для измерения температуры до 1 800 о С, S – 1 600°С, С – до 1 500.
  • Рениево-вольфрамовые термопары применяются для измерения высоких температур 25 000°С и менее. Также устройство предназначено для устранения окислительной атмосферы, разрушающей материал.

Монтаж

Принципиальной разницы между установкой российского или европейского оборудования нет – схема везде одинакова. Мы опишем самый простой способ.

  1. Откручиваете гайку внутри резьбового соединения к газопроводу.
  2. На самой термопаре откручиваете компенсационный винт.
  3. В отверстие монтажного кронштейна вставляете термопару.
  4. Протрите место соединения ветошью резьбовое соединение и гайку.
  5. Закрутите соединение до упора, но не затягивайте слишком сильно. Если есть необходимость, можно использовать прокладку.

Контролер газовой плиты должен быть соединен максимально плотно, но чтобы его можно было снять по мере надобности.

Термопара для печи

Обратите внимание на то, чтобы обе трубы были направлены строго вниз.

Теперь разбираемся, как работает. Концевой выключатель всегда расположен на несколько сантиметров ниже пленума под автоматом контроля безопасности плиты. Когда пленум нагревается до предела, выключатель дает сигнал на отключение горелки и сразу же срабатывает вентилятор. В этот момент происходит резкое снижение температуры.

На некоторых устройствах вентилятор не останавливается. Причиной этого может быть выключенный контроль вентилятора (посмотрите на рычаг, он должен быть на отметке «вкл») либо выход из строя термостата. Как вариант, может быть установлен ручной режим вместо автоматического.

После установки устройства необходимо проверить правильность работы. И если настройка происходит в лабораторных условиях, то калибровать термопару можно и собственноручно.

Для этого снимаете крышку блока управления и смотрите на циферблат. Со стороны вентилятора есть 2 датчика, которые изначально настроены на 25°F. Вам нужно выставить верхний на 115°F, нижний – не меньше 90°F.

Если во время градуировки или калибровки отчетливо слышен запах газа, необходимо проверить уплотнители или вызвать службы газа на предмет выявления утечки.

Преимущества и недостатки применения измерителя

Температурный датчик, невзирая на простоту в устройстве, обладает как преимуществами, так и недостатками.

  • Широкий диапазон температурных режимов, делающих устройство самым устойчивым контактным датчиком перед высокими показателями.
  • В результате нарушения целостности спая можно полностью заменить узел или создать прямой контакт непосредственно через измеряемые системы.
  • Простота устройства, прочность и большой эксплуатационный срок.

  • При установке температурного датчика необходимо регулярно контролировать изменения напряжения холодных спаев. Для облегчения задачи требуется приобрести дополнительный термистор. Также можно заменить устаревший прибор полупроводниковым сенсором, способным автоматически вносить изменения в ТЭДС.
  • Подверженность к поражению коррозией, в результате чего происходит термоэлектрическая недостаточность и нарушение градуировочных характеристик.
  • Электроды состоят из материалов, которые не считаются химически инертным, поэтому при нарушении герметичности корпуса система становится подверженной агрессивным процессам окружающей среды.
  • Длинные термопарные провода образовывают электромагнитное поле.
  • Возникают сложности в процессе создания вторичного преобразователя сигналов из-за несущественного взаимодействия ТЭДС и температурных режимов.
  • Для стабильной работы с термической инерцией, обязательным условием термопара считается обеспечение качественной электроизоляцией, заземление функционирующих спаев, предостерегающих от возникновения утечки в землю.

ВИДЕО: Сравнение термосопротивления и термопары. Основы измерения температуры от Emerson

Термопары: подробно простым языком

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Стандартная термопара

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными. Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Потенциометр

Термопары. Виды и состав. Устройство и принцип действия

Преобразователь температуры в электрический ток называется термопарой. Такой термоэлемент используется в преобразовательных и измерительных устройствах, а также во многих системах автоматики. Если рассматривать термопары по международным стандартам, то это два проводника из разных материалов.

Устройство

На одном конце эти проводники соединены между собой для создания термоэлектрического эффекта, позволяющего измерять температуру.

Внешне такое устройство выглядит в виде двух тонких проволочек сваренных на одном конце между собой, образуя маленький шарик. Многие китайские мультиметры имеют в комплекте такие термопреобразователи, что дает возможность измерять температуру разных нагретых элементов устройств. Эти два проводника обычно помещены в стекловолоконную прозрачную трубку. С одной стороны находится аккуратный сварной шарик, а с другой специальные разъемы для подключения к измерительному прибору.

Промышленное оборудование имеет более сложную конструкцию, по сравнению с китайскими термопарами. Рабочий элемент термодатчика заключают в металлический корпус в виде зонда, внутри которого он изолирован керамическими изоляторами, способными выдержать высокую температуру и воздействие агрессивной среды. На производстве таким термодатчиком измеряют температуру в технологических процессах.

Термопары являются наиболее популярным старым термоэлементом, который применяется в различных приборах для измерения температуры. Он обладает высокой надежностью, низкой инертностью, универсален и имеет низкую стоимость. Диапазон измерения различными видами термопар очень широк, и находится в пределах -250 +2500°С. Конструктивные особенности термодатчика не позволяют обеспечить высокую точность измерений, и погрешность может составлять до 2 градусов.

В бытовых условиях термопары используются в паяльниках, газовых духовках и других бытовых устройствах.

Принцип действия

Работа рассматриваемого термодатчика заключается в использовании эффекта ученого физика Зеебека, который обнаружил, что при спайке двух разнородных проводов в них образуется термо ЭДС, величина которого возрастает с увеличением нагрева места спайки. Позже это явление назвали термоэлектрическим эффектом Зеебека.

Напряжение, вырабатываемое термопарой, зависит от степени нагревания и вида применяемых металлов. Величина напряжения небольшая, и находится в интервале 1-70 микровольт на один градус.

При подключении такого температурного датчика к измерительному устройству, возникает дополнительный термоэлектрический переход. Поэтому образуется два перехода в разных режимах температуры. Входящий электрический сигнал на измерительном приборе будет зависеть от разности температур двух переходов.

Для измерения абсолютной температуры используют способ, называемый компенсацией холодного спая. Суть этого способа заключается в помещении второго перехода, не находящегося в зоне измерения, в среду образцовой температуры. Раньше для этого применяли обычный способ – размещали второй переход в тающий лед. Сегодня для этого используют вспомогательный температурный датчик, находящийся рядом со вторым переходом. По данным дополнительного термодатчика измерительное устройство корректирует итоги измерения. Это упрощает схему измерения, так как измерительный элемент и термопару совместно с дополнительным компенсатором можно соединить в одно устройство.

Разновидности

Температурные датчики на основе термопары разделяются по типу применяемых металлов.

Термопары из неблагородных металлов
Железо-константановые
  • Достоинством стала низкая стоимость.
  • Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.
  • После термического старения показатели измерений возрастают.
  • Наибольшая допустимая температура использования +500°С, при более высокой температуре выводы очень быстро окисляются и разрушаются.
  • Железо-константановый вид является наиболее подходящим для вакуумной среды.
Хромель-константановые
  • Способны работать при пониженных температурах.
  • Материалы электродов обладают термоэлектрической однородностью.
  • Их достоинство – повышенная чувствительность.
Медно-константановые термопары
  • Оба электрода отожжены для создания термоэлектрической однородности.
  • Не восприимчивы к высокой влажности.
  • Нецелесообразно применять при температурах, превышающих 400°С.
  • Допускается применение в среде с недостатком или избытком кислорода.
  • Допускается применение при температуре ниже 0°С.
Хромель-алюмелевые термопары

  • Серная среда вредно влияет на оба электрода термодатчика.
  • Нецелесообразно применять в среде вакуума, так как из электрода Ni-Cr может выделяться хром. Это явление называют миграцией. При этом термодатчик изменяет ЭДС и выдает температуру ниже истинной.
  • Снижение показаний после термического старения.
  • Применяется в насыщенной кислородом атмосфере или в нейтральной среде.
  • В интервале 200-500°С появляется эффект гистерезиса. Это означает, что при охлаждении и нагревании показания отличаются. Разница может достигать 5°С.
  • Широко применяются в разных сферах в интервале от -100 до +1000 градусов. Этот диапазон зависит от диаметра электродов.
Нихросил-нисиловые
  • Наиболее высокая точность работы из всех термопар, изготовленных из неблагородных металлов.
  • Повышенная стабильность функционирования при температурах 200-500°С. Гистерезис у таких термодатчиков значительно меньше, чем у хромель-алюмелевых датчиков.
  • Допускается работа в течение короткого времени при температуре 1250°С.
  • Рекомендуемая температура эксплуатации не превышает 1200°С, и зависит от диаметра электродов.
  • Этот тип термопары разработан недавно, на основе хромель-алюмелевых термодатчиков, которые могут быстро загрязняться различными примесями при повышенных температурах. Если спаять два электрода с кремнием, то можно заранее искусственно загрязнить датчик. Это позволит уменьшить риск будущего загрязнения при работе.
Термодатчики из благородных металлов
Платинородий-платиновые

  • Наибольшая рекомендуемая температура эксплуатации 1350°С.
  • Допускается кратковременное использование при 1600°С.
  • Нецелесообразно использовать при температуре менее 400°С, так как ЭДС будет нелинейной и незначительной.
  • При температуре более 1000°С термопара склонна к загрязнению кремнием, содержащимся в керамических изоляторах. Поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Способны работать в окислительной внешней среде.
  • Если температура работы более 900°С, то такие термодатчики загрязняются железом, медью, углеродом и водородом, поэтому их запрещается армировать стальными трубками, либо необходимо изолировать электроды керамикой с газонепроницаемыми свойствами.

Термопара (термоэлектрический преобразователь)

Термопара (термоэлектрический преобразователь) — устройство, применяемое для измерения температуры в промышленности, научных исследованиях, медицине, в системах автоматики.

Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединенные навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля равной 300 °C и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ.

Принцип действия

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.

Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик:

  • Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
  • Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
  • При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
  • По возможности избегать резких температурных градиентов по длине термопары;
  • Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
  • Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
  • Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Применение термопар

Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

В 1920-х — 1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94.Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.

  • платинородий-платиновые
  • платинородий-платиновые
  • платинородий-платинородиевые
  • железо-константановые (железо-медьникелевые)
  • медь-константановые (медь-медьникелевые)
  • нихросил-нисиловые (никельхромникель-никелькремниевые)
  • хромель-алюмелевые
  • хромель-константановые
  • хромель-копелевые
  • медь-копелевые
  • сильх-силиновые
  • вольфрам и рений — вольфрамрениевые

Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ.

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Сравнение термопар

Таблица ниже описывает свойства нескольких различных типов термопары. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0.0025Г—T имела бы точность В±2.5 В°C в 1000 В°C.

Устройство термопары, ее виды и принцип работы

Время на чтение:

Термоэлектрический преобразователь, или термопара, представляет собой устройство, используемое в промышленности и медицине при проведении научных экспериментов, а также в системах автоматики. С помощью этого прибора проводятся замеры температуры. Для определения разности температурных показателей зон применяются дифференциальные устройства, которые представляют собой две термопары, соединенные навстречу друг другу.

Конструктивные особенности

Если относиться более скрупулезно к процессу замера температуры, то эта процедура осуществляется с помощью термоэлектрического термометра. Основным чувствительным элементом этого прибора считается термопара.

Сам процесс измерения происходит за счет создания в термопаре электродвижущей силы. Существуют некоторые особенности устройства термопары:

  • Электроды соединяются в термопарах для измерения высоких температур в одной точке с помощью электрической дуговой сварки. При замере небольших показателей такой контакт выполняется с помощью пайки. Особенные соединения в вольфрам-рениевых и вольфрамо-молибденовых устройствах проводятся с помощью плотных скруток без дополнительной обработки.
  • Соединение элементов проводится только в рабочей зоне, а по остальной длине они изолированы друг от друга.
  • Метод изоляции осуществляется в зависимости от верхнего значения температуры. При диапазоне величины от 100 до 120 °C используется любой тип изоляции, в том числе и воздушный. При температуре до 1300 °C применяются трубки или бусы из фарфора. Если величина достигает до 2000 °C, то применяется изоляционный материал из оксида алюминия, магния, бериллия и циркония.
  • В зависимости от среды использования датчика, в которой происходит замер температуры, применяется наружный защитный чехол. Выполняется он в виде трубки из металла или керамики. Такая защита обеспечивает гидроизоляцию и поверхностное предохранение термопары от механических воздействий. Материал наружного чехла должен выдерживать высокую температуру воздействия и обладать отличной теплопроводностью.

Конструкция датчика во многом зависит от условий его применения. При создании термопары во внимание принимается диапазон измеряемых температур, состояние внешней среды, тепловая инерционность и т. д.

Принцип действия

Работа термопары основана на принципе термоэлектрического эффекта. Это явление было открыто физиком из Германии Т. Зеебеком в начале XIX века. Его суть состоит в следующем:

  • Если соединить два термоэлектрода из разных металлов или сплавов в замкнутую электрическую цепь, а их рабочую поверхность подвергнуть воздействию разных температур, то по ней начнет протекать электрический ток.
  • Цепь, состоящая только из двух разных электродов, называется термоэлементом.
  • Работает термопара за счет электродвижущей силы, которая вызывает ток в цепи и зависит от материала элементов и разности температуры их соединения.
  • Элемент, из которого поступает ток от горячего соединения к холодному, считается положительным электродом, а от холодного к горячему — отрицательным.
  • Если говорить простым языком, то зная температуру одного соединения, которая поддерживается обычно постоянной, в результате измерения значения тока можно узнать величину нагрева другого соединения.

Термопара ПП расшифровывается как платинородий-платиновый, где первым идет обозначение положительного электрода, а вторым — отрицательного. Величина электродвижущей силы составляет небольшую величину, которая измеряется милливольтами при разнице температуры в 100 К (173,15 °C).

Виды устройств

Каждый вид термопар имеет свое обозначение, и разделены они согласно общепринятому стандарту. Каждый тип электродов имеет свое сокращение: ТХА, ТХК, ТВР и т. д. Распределяются преобразователи соответственно классификации:

  • Тип E — представляет собой сплав хромеля и константана. Характеристикой этого устройства считается высокая чувствительность и производительность. Особенно это подходит для использования при крайне низких температурах.
  • J — относится к сплаву железа и константана. Отличается высокой чувствительностью, которая может достигать до 50 мкВ/ °C.
  • Вид K — считается самым популярным устройством, состоящим из сплава хромеля и алюминия. Эти термопары могут определить температуру в диапазоне от -200 °C до +1350 °C. Приборы используются в схемах, расположенных в неокисляющих и инертных условиях без признаков старения. При применении устройств в довольно кислой среде хромель быстро разъедается и приходит в негодность для измерения температуры термопарой.
  • Тип M — представляет сплавы никеля с молибденом или кобальтом. Устройства могут выдерживать до 1400 °C и применяются в установках, работающих по принципу вакуумных печей.
  • Вид N — нихросил-нисиловые устройства, отличием которых считается устойчивость к окислению. Используются они для измерения температур в диапазоне от -270 до +1300 °C.

Существуют термопары, выполненные из сплавов родия и платины. Относятся они к типам B, S, R и считаются самыми стабильными устройствами. К минусам этих преобразователей относится высокая цена и низкая чувствительность.

При высоких температурах широко используются устройства из сплавов рения и вольфрама. Кроме того, по назначению и условиям эксплуатации термопары могут бывать погружаемыми и поверхностными.

По конструкции крепления устройства обладают статическим и подвижным штуцером или фланцем. Широкое применение термоэлектрические преобразователи нашли в устройстве компьютеров, которые обычно подсоединяются через COM порт и предназначены для измерения температуры внутри корпуса.

Компенсационные провода

В состав термопар входят компенсационные провода, которые выглядят как удлинители для подсоединения устройств к измерительному прибору. Если устроить свободные концы в головке термоэлектрического преобразователя, то практически его подсоединение выполнить нельзя, так как прибор работает при очень высоких температурах.

Кроме того, не всегда прибор, на который поступают данные, можно расположить недалеко от датчиков. Поэтому часто требуется подсоединение измерительного прибора на расстоянии от места, где установлены датчики. Эту задачу с успехом решают компенсационные провода. Обычно их изготавливают из того же материала, что и термоэлектрические датчики.

Удлинительные провода находятся на участках с более низкими температурами, поэтому существует возможность изготавливать их из более дешевого материала. При использовании компенсационных проводов необходимо учитывать возможность появления паразитных электродвижущих сил. Провода должны обеспечить отведение свободных концов от термопары в зону с пониженной и постоянной температурой.

Источники погрешностей измерений

На выполнение правильного процесса измерения влияют внешние источники, техническое состояние средств измерения и другие условия. На точность измерения с использованием термоэлектрического преобразователя влияет изменение электродвижущей силы.

Это явление называется термоэлектрической нестабильностью используемых сплавов. В процессе эксплуатации стало известно, что сплавы электродов изменяют свою ЭДС, которая приводит к искажению показаний.

Во время длительной эксплуатации при высоких температурах такие ошибки могут достигать больших величин, что приводит к снижению точности измерений.

Основными причинами нестабильности измерений считаются:

  • взаимодействие термоэлектродов с внешней средой;
  • влияние на датчики изолирующих и защитных устройств;
  • взаимодействие электродов друг с другом;
  • внутренние процессы, которые возникают при изменении температуры;
  • влияние радиации, электромагнитных полей и перепадов давления.

Под воздействием высокой температуры происходит снижение сопротивления изоляции датчиков, которое приводит к искажению измерений. Часто источником возникновения ошибок при замерах становится неправильный выбор термоэлектрода, так как его сопротивление не совпадает с показаниями электрической цепи. Изменение электродвижущей силы по длине термоэлектрического преобразователя тоже приводит к возникновению ошибок при получении показателей.

Ссылка на основную публикацию
Adblock
detector