76 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет осадки свайного фундамента методы и особенности

Расчет осадки свайного фундамента методы и особенности

Библиографическая ссылка на статью:
Мельников В.А., Алексеев Н.С., Ионов К.И. Сравнительный анализ методик расчета осадки свайных фундаментов // Современные научные исследования и инновации. 2015. № 9. Ч. 1 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/09/57462 (дата обращения: 13.09.2020).

На современном этапе развития фундаментов одной из главных задач является повышение эффективности проектировочных решений, разработка экономически обоснованных и конкурентоспособных решений

В настоящее время большой размах приобретает строительство на слабых водонасыщенных грунтах, когда строители используют под объекты площадки, которые ранее признавались геологами невыгодными для возведения сооружений.

В сложных инженерно-геологических условиях свайный вариант зачастую оказывается единственно возможным видом фундаментов. Свайные фундаменты применятся в тех случаях, когда грунты основания представлены насыпью большой мощности, илистыми отложениями, связными грунтами в текучем и текуче-пластичном состоянии и т.п. [13, 15].

Так как затраты на устройство подземной части здания составляют до 25% от общей стоимости, снизить эти показатели позволяет применение более экономичных и индустриальных свайных фундаментов.

Важнейшим резервом повышения эффективности свайных фундаментов является совершенствование определения их осадок на стадии проектирования.

Сложность работы сваи в грунте делает невозможным создание математически строгой теории надежности расчета. Поэтому используются различные инженерные методики расчета. Используемая в настоящее время нормативная литература в области проектирования свайных фундаментов содержит недостаточно информации и позволяет получать неоднозначные результаты.

Целью данной работы является сравнение результатов расчета осадок свайных фундаментов здания каркасного типа в заданных геологических условиях. Параметры здания и геологический разрез приняты одинаковыми для того, чтобы выявить влияние различных теоретических подходов к расчету осадок в СНиП 2.02.03.-85 «Свайные фундаменты» и СП 24.13330.2011 «Свайные фундаменты» (актуализированная редакция).

2. Расчет несущей способности свай
Характеристики грунтов и мощности слоев, слагающих грунтовое основание заданного сооружения, представлены в таблице 1.

Расчеты проводятся по двум группам предельных состояний [2]:Будем рассматривать висячие железобетонные сваи, призматической формы, квадратного поперечного сечения с заостренным концом. При этом размеры поперечного сечения принимаем 40 х 40 см, длину сваи 13 м.

1) по несущей способности – по прочности материала свай и материала ростверка (ведется на основное сочетание расчетных нагрузок);
2) по деформациям – по осадкам оснований свай и свайных фундаментов от вертикальных нагрузок (на основное сочетание нормативных нагрузок).

Сваю в составе фундамента и вне его по несущей способности грунтов основания следует рассчитывать исходя из условия [6]:

, (1)

где N — расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании);

F d — расчетная несущая способность грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи;
— коэффициент условий работы, учитывающий повышение однородности грунтовых условий при применении свайных фундаментов, принимаемый равным 1,15 при кустовом расположении свай;
— коэффициент надежности по назначению (ответственности) сооружения, принимаемый равным 1,15;
— коэффициент надежности примем равным 1,4, т. к. несущая способность сваи определена расчетом.
Несущую способность F d , висячей забивной сваи, погружаемой без выемки грунта, работающей на сжимающую нагрузку, следует определять как сумму сил расчетных сопротивлений грунтов основания под нижним концом сваи и на ее боковой поверхности по формуле [6]:

где c — коэффициент условий работы сваи в грунте, принимаемый c = 1;
R — расчетное сопротивление грунта под нижним концом сваи, принимаемое по таблице (табл. 7.2 [4]): R =5360 кПа;
A — площадь опирания на грунт сваи, м 2 , принимаемая равной площади поперечного сечения сваи: A =0,16 м 2 ;
u — наружный периметр поперечного сечения сваи, м: u =1,6 м;
f i — удельное сопротивление i-го слоя грунта основания на боковой поверхности сваи, принимаемое по таблице (табл. 7.3, [4]) в зависимости от глубины H i и вида грунта на этой глубине;
H i — глубина погружения средней точки i-го однородного участка грунта;
h i — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;
cR , cf — коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта (табл. 7.4, [4]): .
Определим f i и и результаты сведём в таблицу 2:
Таблица 2

Расчет осадки свайного фундамента – нормативные документы, требования, формулы

В процесс проектирования дома входит проведение инженерных изысканий грунтов, залегающих на выделенной под строительство площадке, и расчеты конструктивных элементов строения. Определение формы, структуры и габаритов наземных и подземных частей здания сопряжено с направлением, величиной и видами принимаемых нагрузок. Кроме того, учитывается специфика грунтов и детальные особенности дома, указанные в задании на проектные работы. Все эти факторы ведут к разным вариантам и алгоритмам вычислений. В частности, возведение объекта на слабых почвах влечет за собой расчет осадки свайного фундамента, что является одним из способов определения предельных состояний грунтового основания.

Нормативные документы

В настоящее время более поздней, актуализированной версией СНиП 2.02.03-85, распространяющейся на сферу проектирования свайных фундаментов, являются СП 24.13330.2011. В строительные правила внесены определенные замены и поправки, но в целом нормы СНиП особых усовершенствований не претерпели. Тем не менее, при существенных разногласиях, предпочтение следует отдавать СП, а не полагаться на СНиП.

Рассматриваемый свод правил озвучивает требования к проектированию определенного вида фундамента – свайного. В них указываются разные типы свай, геологические и инженерные условия, принимаются во внимание вновь строящиеся и находящиеся в стадии реконструкции сооружения. Но данные СП, как, впрочем, и СНиП, не имеют отношения к свайным опорам, возводимым:

  • под объектами с динамическими нагрузками;
  • в условиях вечной мерзлоты;
  • для нефтепромысловых сооружений;
  • на глубину более 35 метров.

Общие требования и виды свай

При проектировании свайных фундаментов основываются на:

  • инженерно-геологических изысканиях;
  • особенностях сооружения – конструктивных, эксплуатационных, технологических;
  • сейсмичности региона;
  • величине и направлении полезных, а также временных нагрузок;
  • технико-экономических обоснованиях и сравнениях с другими вариантами.

В СП и СНиП производится определение вида свай:

  • по варианту заглубления – забивные и винтовые, вдавливаемые и вибропогружаемые, набивные и буровые;
  • по способу опирания на грунт – стоячие и висячие;
  • по материалу – деревянные, металлические, бетонные и железобетонные;
  • по форме поперечного и продольного сечения;
  • по наличию армирования;
  • по типу пяты и т.д.

В СНиП указывается, что расчеты свайных фундаментов должны производиться по предельным состояниям, разделенным на две группы. Первая относится к прочности материала, а также к несущей способности и устойчивости оснований. Вторая имеет отношение к осадкам свай в результате воздействия вертикальных нагрузок, к различным перемещениям в горизонтальном направлении подземных опор вместе с грунтовыми слоями и, кроме того, к образованию глубоких трещин в железобетонных фундаментных конструкциях.

Допустимая осадка фундамента, согласно требованиям СНиП, рассчитывается по второй группе предельных состояний.

Существенным моментом при проведении любых расчетов является необходимость закладки в результат вычислений плюсовых коэффициентов запаса надежности. Определение окончательных показателей производится по вариантным расчетам, после сопоставления альтернативных решений. В определенных СП даются расчетные значения и необходимые для вычислений коэффициенты, а также уточняются действующие нагрузки на фундамент, а также их сочетания. Какие именно строительные правила устанавливают те или иные характерные показатели, указывается в СНиП.

Расчет осадки свай

В СП предусматривается несколько расчетных схем, учитывающих размещение свай относительно друг друга. При этом все они основываются на линейно-деформируемой модели грунта, но при надлежащем обосновании могут применяться и другие варианты. Основным условием расчета на осадки любого типа свайных фундаментов является определение значения его возможных деформаций, не превышающих предельных показателей.

где S– общая осадка;

Su – предельная деформация.

При несоблюдении условия производят перерасчет с увеличением заглубления свайных опор до тех пор, пока не будет достигнуто необходимого результата.

По СНиП висячие сваи рассчитываются на осадки как условный фундамент, границы которого на уровне пяты выходят за пределы общей площади реально расположенных лент или кустов свай. В актуализированной версии СП предусмотрен несколько иной алгоритм расчета.

Одиночные сваи

Существует ряд формул, определяющих осадку:

  • висячие сваи, не имеющие уширения в зоне пяты

где N – принимаемая сваей вертикально направленная нагрузка, МН;

l – линейный размер сваи, а именно – ее длина, м;

здесь, d – наружный диаметр сваи, м.

Если поперечное сечение является не круглым, а квадратным, прямоугольным, тавровым или двутавровым, то для определения условного диаметра применяется формула:

здесь А – соответствует табличному значению площади поперечного сечения.

υ – коэффициент Пуассона;

параметр, учитывающий увеличение расчетной осадки, возникающее по причине сжатия ствола –

.

  • стоячие сваи и висячие с уширением в зоне пяты

Значения модуля сдвига и коэффициента Пуассона зависят от характеристик грунтовых пластов. Они принимаются путем послойного суммирования и осреднения в результате деления полученной цифры на количество присутствующих слоев в пределах глубины погружения сваи.

Свайный куст

Расчет свайной группы на осадки основывается на взаимодействии подземных опор между собой. В этом случае определяется дополнительная деформация сваи, расположенной на определенном расстоянии (ɑ) от нагружаемой сваи.

Если распределение нагрузок между сваями в одном кусте известно, то при вычислении осадки каждой из них используется формула:

где s(N) – определяемая по вышеприведенной формуле осадка (для одиночно расположенной сваи);

Если же распределение неизвестно, то расчет производится по той же формуле, но с учетом дополнительных нюансов и использованием знаний по строительной механике.

Свайное поле

Расчет, в данном случае, рекомендуется выполнять иначе, нежели в двух предыдущих вариантах. Для этого существует формула:

На размещенном ниже рисунке показано, что такое границы условного фундамента относительно крайних рядов свай:

а) вертикально расположенных;

б) наклонно расположенных.

Осадка свайного поля вычисляется методом послойного суммирования. В этом случае в зоне условного фундамента масса грунта в учет не принимается, а в качестве нагрузки учитывается лишь прямое воздействие расчетных усилий на свайный фундамент.

При расчетах методом послойного суммирования для свайного поля, берут во внимание то, что общая величина осадки находится в зависимости от шага свайных опор в пределах площади поля. Но здесь возникает определенная сложность, так как шаг может иметь переменную величину. В этом случае вариант послойного суммирования усложняют методом ячейки, используя при расчетах другие схемы и формулы, детально указанные в СП.

Принцип метода послойного суммирования

Его суть описана в СП 22.13330.2011, являющихся актуализированной редакцией СНиП 2.02.01-83*. Она состоит в следующем. Вертикальные усилия на фундамент расчленяют на несколько участков, соответствующих толщине грунтовых слоев, которые характеризуются однородным составом и свойствами. На расчетной схеме криволинейная эпюра изменяется на ступенчатую. В каждом слое определяют работу на сжатие без бокового расширения. При этом общую осадку вычисляют методом послойного суммирования.

В процессе расчета строят схему распределения напряжений, а при расчетах пользуются специальными формулами, указанными в СП, и размещенными там же таблицами. Пример схемы показан на рисунке ниже.

Комбинированный фундамент

Свайно-плитная конструкция подземной части дома применяется в целях снижения осадок и более равномерного распределения нагрузок. Такой фундамент эффективно работает в сложных грунтовых условиях, сочетая сопротивление нагрузкам как свай, так и плиты. Расчет осадки, в данном случае, включает в себя определение:

  • усилий в сваях и плите;
  • деформаций и перемещений комбинированного фундамента в целом, а также его отдельных составляющих;
  • нагрузок в процентном отношении на каждую из свай и определенные участки плиты.

После выполнения расчетов с учетом запаса надежности, определяется длина и шаг свайных опор.

Правильные вычисления и выбор конструктивных элементов комбинированного фундамента обеспечит отсутствие существенных осадок, перекосов и кренов строения в период его эксплуатации. Дополнительные условия расчета приведены в СП 24.13330.2011.

Расчет осадки свайного фундамента: методы и особенности

Грунты, как основания, для всех видов фундаментов, кроме свайных, делят на естественные и уплотненные, то есть, такие, которые искусственно закреплены. Для свайных основания делят на однослойные и двухслойные, разделяя их на слабые, средней прочности и прочные грунты. При этом для двухслойных оснований исключено сочетание слабых со средней прочности, а в других сочетаниях вторым слоем должен быть прочный грунт.

При закладке фундамента стоить брать во внимание не только землю на которой будет стоять фундамент, а так же и прилегающие территории.

Расчет оснований по деформациям относится к определению предельных состояний первой группы. Расчет осадки свайного фундамента относится к расчету предельных состояний второй группы.

Основания зданий и сооружений

Рисунок 1. Схема размещения лент. 1. Грунт в межсвайном пространстве. 2. Контур свайного фундамента.

Основанием называют не только площадь под строением, но и грунт вблизи него, который под действием силы тяжести создаваемой сооружением также уплотняется через фундамент. Его слой, расположенный непосредственно под подошвой фундамента, называют несущим. Он расположен над подстилающим слоем.

В зависимости от размеров твердых частиц грунты бывают галечные, гравелистые, песчаные, пылеватые и глинистые. Глинистые по процентному содержанию глины делят на супесь (от 3 до 10 %), суглинки (от 10 до 30 %) и грунты, содержащие свыше30 % глины. Их и называют глинами. Физические свойства во многом определяются содержащейся в них воды.

В зависимости от прочности на сжатие грунты делят на:

  • прочные (от 50 до 120 МПа);
  • средней прочности (от 15 до 50 МПа);
  • слабые (от 5 до 15 МПа).

Для определения осадки свайного фундамента, необходимо знать такие характеристики грунта, как коэффициент сжимаемости и модуль общей деформации.

У малосжимаемых грунтов коэффициент сжимаемости меньше 0,005. У средне сжимаемых видов он изменяется от 0,005 до 0,05. У сильно сжимаемых оснований этот показатель превышает 0,05. Единицей измерения коэффициента сжимаемости является 1/МПа.

Расчет оснований свайных фундаментов необходимо выполнять по предельным состояниям первой и второй группы с учетом влияний, которые оказывают такие факторы, как подземные воды, промерзание грунта и др. Необходимо также учитывать взаимодействие сооружения и основания.

К первой группе относятся расчеты по несущей способности грунтов, под которой понимают определение его сопротивления нагрузке и сравнение этой величины с допустимой величиной для конкретного вида грунта.

Расчет осадки основания относится ко второй группе. Его можно выполнять для отдельной сваи, группе свай и всего фундамента.

О свайных фундаментах подробнее

В плане свайный фундамент представляет ленты из свай, на которых размещают ростверк.

Неверный расчет опорной площади может привести к обрушению дома.

Ленты обычно имеют не более 3-х рядов, относительно которых опоры размещают, так как показано внизу на изображении 1 или в шахматном порядке. Расстояние между рядами должно быть не более (3‑4)d (d – диаметр сваи). Возможен вариант, когда все сваи объединяют одним ростверком-плитой. Это может быть при их большом количестве, размещаемых как под наружными, так и под внутренними стенами.

Если расстояние между рядами, равно 3d, то груз, передаваемый на них через ростверк, приводит к перемещению и свай, и грунта, находящегося между ними. То есть такую конструкцию правомерно считать единым целым или эквивалентом ленточного фундамента, имеющим сплошную подошву. Поэтому расчет осадки свайного варианта конструкции можно выполнять, как и вычисление осадки обычного ленточного фундамента.

После заглубления концы свай могут опираться на малосжимаемые грунты (модуль деформации, превышающим 50 МПа), и их называют стойками. Такой слой называют несущим. Обычно он находится глубже, чем верхние слабые слои. В прочный грунт свая должна входить не менее чем на 0,5 м. В этом случае осадка свайного варианта фундамента будет меньше. Расстояние между рядами стоек может составлять 1,5 d.

Если же конец сваи оказывается в сжимаемом грунте, то их называют висячими. Для несущей способности висячих свай большое значение имеет уплотненная зона, образующаяся по их периметру в процессе забивки. Сжимающие напряжения, максимальные вблизи корпуса, постепенно уменьшаясь, на расстоянии 3d уже не оказывают влияние на стоящую вблизи, такую же висячую сваю. Поэтому и важно, чтобы расстояние между ними было не меньше чем 3d.

Для расчета осадки свайного фундамента вводят такое понятие, как условный фундамент. Сделать фундамент условным можно, если нижнюю границу (подошву) его определить по нижним концам свай, верхнюю – по планировке поверхности. Боковые поверхности определить по крайним рядам свай, отступив от их центра на величину, равную половине шага между ними. По этим размерам определяют поперечное сечение. Погонную нагрузку на основание определяют, как сумму веса свай и грунта, находящегося в объеме, определяемом указанным поперечным сечением на длине фундамента, равной 1 м.

Как правильно сделать свайный фундамент?

Рисунок 2. Схема вычисления коэффициента.

Для определения осадки одно- или двухрядных условных фундаментов можно воспользоваться формулой (СП50-102-2003)

n – нагрузка на основание от собственного веса фундамента и веса сооружения. Первую величину рассчитывают с учетом веса свай по удельному весу грунта и объему на длине в 1 м.

Е – модуль деформации, Мпа, или кг/см 2 =10·МПа. Этот коэффициент сложным образом зависит от типа грунта, его пористости, а для глинистых грунтов и от показателя текучести. Значения модуля деформации приведены в приложении 1 СНиП 2.02.01-83. В таблице 1 приведены некоторые значения этого коэффициента.

ν – коэффициент Пуассона. В соответствии со СНиП 2.02.01-83: для супесей равен 0,3, суглинков – 0,35, глин – 0,42, крупнообломочных грунтов ν=0,27.

δ – коэффициент, зависящий от коэффициента Пуассона. Для его определения необходимо воспользоваться номограммами, приведенными на рис. 2.

Схема видов свай.

Поясним выполнение расчета по определению значения δ на конкретном примере. Пусть слой грунта супесь с коэффициентом Пуассона ν=0,3. Для расчета необходимо определить приведенные значения ширины фундамента Впр и приведенное значение сжимаемой толщи основания Нс пр. Эти величины определяют по формулам:

где h – расстояние от верхней до нижней границы условного фундамента. Если Впр=2, а Нс пр=0,3, то:

  1. В левом графике рис. 1 проводим прямую параллельную оси абсцисс на уровне Нс/h=2 до пересечения с линией В/h=0,3.
  2. Из точки пересечения опускаем перпендикуляр на ось абсцисс и находим относительное значение коэффициента Пуассона. Поскольку ось абсцисс не оцифрована, то отсчитываем количество делений; получили 10 делений.
  3. Переходим на правый график рис. 1, отсчитываем по оси абсцисс 10 делений и восстанавливаем из этой точки перпендикуляр до пересечения со значением коэффициента Пуассона ν=0,3.
  4. Проводим через точку пересечения прямую, параллельную оси абсцисс и получаем значение δ≈2,05.

Теперь, чтобы рассчитать осадку по формуле (1) необходимо определить нагрузку, приходящуюся на 1 м. Это легко сделать, зная вес сооружения и длину условного фундамента, а также удельный вес грунта. Например, для супеси он составляет примерно 2700 кг/м 3 .

Расчет осадки: метод послойного суммирования

Рисунок 3. Схема определения осадки основания.

Чтобы сделать свайный фундамент, осадку основания под ним можно определить методом послойного суммирования в соответствии с расчетными эпюрами, представленными на рис. 3. Схема фундамента, как и ранее, будет соответствовать условному.

Метод заключается в том, что основание разделяют на однородные слои, начиная от поверхности до глубины, на которой дополнительные нагрузки на сжимаемость слоя влияния не оказывают. На рис. 1 эта глубина обозначена НС. На изображения показаны уровни: планирования и поверхности природного рельефа – DL и NL,соответственно, FL – уровень подошвы фундамента (для свайного это уровень нижнего конца свай).

Значения НС определяют из условия:

где σzp – дополнительное напряжение, возникающее в грунте от веса сооружения (с учетом веса условного фундамента);
σzg – напряжение в грунте от его собственного веса, естественно, возрастающее с глубиной.

Если ниже границы ВС находится слой модулем деформации Е≤5 МПа, то значения НС определяют из условия:

На рис. 2 показаны:

  • эпюра изменение напряжения от собственного веса грунта σzg ;
  • дополнительная прямая 0,2 σzg;
  • эпюра изменения напряжения от веса сооружения σzg.

Алгоритм выполнения расчета, например, для основания, состоящего из 3-х слоев, отличающихся физическими свойствами:

Строим эпюру от действия собственного веса путем последовательного вычисления ее ординат. По ней строим дополнительную прямую, равную 0,2σzg. Далее:

  • на уровне NL σzg=0;
  • на уровне FL σzg= γ1d (γ1 – удельный вес первого слоя, d – расстояние между уровнями NL и FL);
  • на границе между 1 и 2 слоями σzg 1 = σzg 0+ (h1-d) γ1 (h1 – толщина первого слоя);
  • на границе между 2 и 3 слоем σzg 2 = σzg 1 + γ2h2;
  • на подошве 3 слоя σzg 2 = σzg 2 + γ3h3.

После по формуле:

где Ei – модуль деформации i-го слоя;
σzр срi – среднее напряжение, определяемое по формуле:

Сдвиги, полученные по всем слоям, суммируем.

В работе приведен простейший вариант расчета. Не были учтены такие факторы, как грунтовые воды, и многие другие, оказывающие существенное влияние на свойства грунтов. Поэтому, прежде чем выбрать вариант фундамента для дома, необходимо выполнить качественный расчет, для этого целесообразно воспользоваться услугами специалиста.

Осадка свайного фундамента

После возведения здания фундамент начинает оседать под действием нагрузок. Осадка может привести к перекосу конструкции с последующим ее разрушением. Чтобы этого избежать, производится расчет осадки.

Полученный результат сравнивают с допустимой осадкой (СНиП). Если расчетное значение больше, проект фундамента надо корректировать.

Что такое осадка свайного фундамента

Определение осадки – это расчет по деформациям (предельным состояниям) грунта. Оптимум – S ≤ Su, где Su – предельная осадка, S – расчетная.

Если это условие не соблюдается, нужно усиливать фундамент за счет увеличения длины свай таким образом, чтобы их концы опирались на более глубокие и устойчивые слои грунта.

Сваи создают нагрузку на грунт во всех направлениях, своей боковой поверхностью и нижними концами. На расчет нагрузок влияют следующие факторы:

  • Свойства грунта, его сжимаемость, степень уплотнения.
  • Длина свай.
  • Количество.
  • Расстояние между сваями.

При определении осадки принимается ряд допущений, облегчающих расчет, но снижающих его точность.

Расчет осадки свайного фундамента методом послойного суммирования

Расчетная осадка получается при суммировании сжатий всех слоев грунта, на которые давит фундамент.

Для этого определяется осадка отдельных слоев:

– Р – среднее уплотняющее давление в слое (берется из графика);

– m – сжимаемость грунта, коэффициент, полученный по результатам компрессионных испытаний;

– h – толщина слоя.

Соответственно, S = ∑ Si.

Или S = ∑ (h * β/E * P),

– E – модуль деформации слоя (если он известен);

– β – коэффициент 0,8 (СНиП).

Перед Вами расчетная схема для определения осадки фундамента методом послойного суммирования, где: DL — отметка планировки; NL — отметка поверхности естественного рельефа; FL — метка подошвы фундамента; ВС — нижняя граница сдавливаемой толщи; Нс — сжимаемая (сдавливаемая) толща.

Изображение схемы распределения вертикальных давлений и напряжений в линейно-деформируемом полупространстве расчета осадок основания с использованием метода послойного суммирования.

Определение осадки свайного фундамента

Расчет производится по аналогии с массивным фундаментом, т.е. принимается, что нагрузка равномерно распределена по всей площади фундамента, условно принятого за монолитный блок.

  • Верхняя поверхность условного монолита проходит через оголовки свай.
  • Нижняя – через их наконечники.
  • Боковые — по крайним рядам свай.

По составленному разрезу фундамента выстраивается график Р (уплотняющих напряжений слоев).

Допустимая осадка свайного фундамента

Допустимые (предельные) значения осадки фундаментов приведены в СНиП 2.02.01-83, приложение 4. Они зависят от типа здания:

  • Сооружения с железобетонным каркасом – 8 см
  • Со стальным каркасом – 12 см
  • Панельные и блочные бескаркасные – 10 см, и т.д.

Наши услуги

Наша компания «Богатырь» базируется исключительно на услугах: забивка свай, лидерное бурение, забивка шпунта, а так же статических и динамических испытаниях свай. В нашем распоряжении собственный автопарк бурильно-сваебойной техники и мы готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку.

Осадка свайного фундамента

На данной странице представлена информация об осадке свайного фундамента. Вы узнаете, что это за процесс и какие факторы на него влияют. Мы рассмотрим методы расчетов осадки, способы ее фактического определения и технологии предотвращения осадки железобетонных свай.

Что такое осадка фундамента и что на неё влияет

Осадка свайного фундамента — это изменение уровня размещения свай в грунте, возникающие в процессе их эксплуатации. Основная причина осадки — неправильные расчеты устойчивости фундамента к нагрузкам на стадии его проектирования, которые приводят к использованию опор недостаточной длины либо меньшего, чем того требуют фактические условия, сечения.

Проседания свай возникают под воздействием следующих факторов:

  • Недостаточной несущей способности почвы, в которой размещена опорная подошва свай;
  • Нагрузок, передающихся на фундамент в процессе работы в грунте, исходящих от массы здания, давления снега и эксплуатационных воздействий.

Грузонесущуя способность железобетонной опоры по материалу будет всегда больше, чем аналогичная характеристика грунта. Если в расчетах фундамента допущены ошибки, то пласт грунта в котором расположена опорная часть свай, под весом здания будет уплотняться и проседать, что приведет к уменьшению нулевого уровня фундамента (его осадке).

Данная проблема особенно характерна для висячих свай, которые получают устойчивость за счет трения почвы с боковыми стенками опоры. Сваи стойки, опирающиеся на глубинные, несжимаемые пласты грунта, ввиду высокой плотности породы практически не подвергаются осадке.

Расчёт осадки — методы

Специалисты, занимающиеся проектированием фундаментов, определяют расчетную осадку свай исходя из второй группы предельных состояний железобетонных опор, для чего используется два метода:

  • Способ послойного суммирования;
  • Способ эквивалентного слоя.

Рассмотрим каждый из них подробнее.

Способ послойного суммирования

Данный метод рекомендован к применению действующим СНиП, он является наиболее часто используемым способом вычислением осадок свайных оснований.

При использовании способа послойного суммирования свайное основание принимается за условную монолитную конструкцию, размеры которой считаются по контуру крайних точек свайного поля. На нижеприведенной схеме размеры свайного основания представлены границами АВДС.

Первоначально составляется габаритная схема основания АБСД, при расчетах используется величина уклона «а», выводящаяся из следующих формул:

  • φcp — усредненный угол внутреннего трения контактирующих со сваей слоев почвы, определяемый посредством геодезических изысканий;
  • а — эпюра рассеивания нагрузок по высоте свайной опоры.

После определения величины «а» производится расчет длины и ширины основания AБCД по формуле:

Полученные габаритные характеристики применяются в формуле расчета давления на опорную часть фундамента (Р усп). Давление сопоставляется с удельным сопротивлением контактирующих со сваями пластов грунта (R усл. фун).

Удельное сопротивление почвы, в свою очередь, выводится по формуле:

Если в результате сопоставления нагрузок и сопротивления грунта получается соблюдение условий, составляются эпюры нагрузок на сваи «σ0z» и «σбz» (приведены на схеме), и по формуле S выводится величина осадки основания.

Способ эквивалентного слоя

Альтернативный способ эквивалентного слоя подразумевает расчет осадки исходя из контролируемого бокового расширения почвы. В данном случае за эквивалентный слой принимается пласт почвы (hэ), который при невозможности пространственного расширения дает удельную осадку, аналогичную общей осадке равномерно нагруженного фундамента. По простому — вместо послойного суммирования слоев используется одномерный коэффициент, совокупный для всех контактирующих со сваей пластов грунта.

Мощность условного эквивалентного слоя высчитывается на основе коэфф. Пуансона, коэффициента жесткости фундамента (w) и его габаритной ширины (b) по формуле:

При этом за А принимается коэффициент, индивидуальный для каждого типа грунта: А равно .

Используемое при расчетах соотношение Aw (коэффициента грунта и жесткости фундамента) именуется величиной эквивалентного пласта, нормативные данные которого представлены в нижеприведенной таблице:

Осадка фундамента рассчитывается по формуле: , в которой:

  • Ро — эксплуатационное давление на опорную часть свайного фундамента (от массы здания, снеговых и полезных нагрузок);
  • mv — нормативный коэфф. сжимаемости почвы.

Как определить осадку свайного фундамента

Фактическая осадка свай определяется посредством их статических испытаний. В процессе испытаний на опору гидравлическими домкратами оказывается давление и с помощью прогибомера измеряется величина осадки сваи от полученной нагрузки.

Технология статических испытаний предназначена для определения критических и предельных нагрузок, которые может выдержать свайный фундамент. Под критической нагрузкой подразумевается давление, которое приводит к резкой осадке (проваливанию) сваи в грунт, величина которой в 5 и более раз превышает осадку от ранее полученного сваей давления. Осадка предельного типа определяется по нагрузке, на 1 ступень меньшей, чем нагрузка приводящая к критической осадке.

Для проведения испытаний используются гидравлические домкраты с усилием давления от 50 до 200 тонн, измерения ведутся с точностью до 0.1 мм. Прогибомер фиксируется на высотных реперах, которые представлены стойками, удаленными от сваи на 1-2 метра, и закрепленными на них ригелями (на ригелях посредством ступицы фиксируется измерительный прибор).

Допустимые нормы осадки

На практике кирпичные здания, фундамент которых подвергся неравномерной усадке более чем на 12 см, получают серьезные деформации, вплоть до появления на стенах и перекрытиях сквозных трещин.

Как избежать осадки

Предотвратить осадку фундамента можно еще на стадии проектирования основания. Если расчеты показывают, что величина осадки превышает допустимою норму, нужно заменить висячие сваи на сваи-стойки — использовать опоры большей длины, которые работают в грунте не за счет сопротивления почвы боковым стенкам конструкции, а за счет опирания на глубинный пласт несжимаемого грунта.

Снизить риск осадки фундамента можно и посредством увеличения сопротивления грунтов, что достигается за счет их цементации. Данный метод особенно эффективен в условиях почвы, обладающей низкой плотностью. Его суть заключается в нагнетании в толщу грунта бетонной смеси либо силикатного раствора с помощью специальных инъекторов.

Инъектор представляет собой перфорированную стальную трубу, которая погружается в почву и подключается к бетононасосу. Подача смеси ведется в пласты грунта, в которых расположена опорная часть сваи. В результате вокруг опорной подошвы сваи, после отвердевания смеси, образуется монолитная бетонная подушка, которая предотвращает осадку фундамента под внешними нагрузками.

Полезные материалы

Свайный фундамент своими руками — пошаговая инструкция

СК «Установка Свай» занимается возведением фундаментов на железобетонных сваях.

Как рассчитать свайный фундамент

В местностях с зыбкими, слабыми грунтами предпочтительные виды фундаментов под дома и сооружения – свайный и свайно-ростверковый.

Как закрыть свайный фундамент

Свайный фундамент, особенно высокий фундамент с ростверком на сваях , обычно стараются закрыть.

Расчет осадки свайного фундамента: методы и особенности

Вопрос от клиента: “Добрый день. Планирую возводить двухэтажный коттедж на свайном фундаменте в Подмосковье.

В процессе проектирования основания столкнулся с проблемой осадки – большинство соседей говорят, что из-за осадки им приходилось неоднократно усиливать фундаменты своих домов. Подскажите пожалуйста, как правильно рассчитать устойчивость фундамента к осадке на стадии проектирования, чтобы избежать проблем в дальнейшем. Заранее спасибо”.

На данной странице представлена информация об осадке свайного фундамента. Вы узнаете, что это за процесс и какие факторы на него влияют. Мы рассмотрим методы расчетов осадки, способы ее фактического определения и технологии предотвращения осадки железобетонных свай. Осадка свайного фундамента – это изменение уровня размещения свай в грунте, возникающие в процессе их эксплуатации. Основная причина осадки – неправильные расчеты устойчивости фундамента к нагрузкам на стадии его проектирования, которые приводят к использованию опор недостаточной длины либо меньшего, чем того требуют фактические условия, сечения. Проседания свай возникают под воздействием следующих факторов:

    Недостаточной несущей способности почвы, в которой размещена опорная подошва свай;Нагрузок, передающихся на фундамент в процессе работы в грунте, исходящих от массы здания, давления снега и эксплуатационных воздействий.

Важно: несущая способность почвы увеличивается пропорционально уровню ее расположения – чем глубже находится пласт, тем большей плотностью и силой сопротивления он обладает, тогда как поверхностные слои почвы, как правило, представлены низкоплотными породами, неспособными выдержать исходящую от фундамента нагрузку.

1.1: Схема осадки свайных фундаментовГрузонесущуя способность железобетонной опоры по материалу будет всегда больше, чем аналогичная характеристика грунта. Если в расчетах фундамента допущены ошибки, то пласт грунта в котором расположена опорная часть свай, под весом здания будет уплотняться и проседать, что приведет к уменьшению нулевого уровня фундамента (его осадке).

1.2: Схема работы свай в грунте – а) сваи-стойки; б) висячие сваи.Данная проблема особенно характерна для висячих свай, которые получают устойчивость за счет трения почвы с боковыми стенками опоры. Сваи стойки, опирающиеся на глубинные, несжимаемые пласты грунта, ввиду высокой плотности породы практически не подвергаются осадке. Специалисты, занимающиеся проектированием фундаментов, определяют расчетную осадку свай исходя из второй группы предельных состояний железобетонных опор, для чего используется два метода:Способ послойного суммирования;Способ эквивалентного слоя.Рассмотрим каждый из них подробнее.

Данный метод рекомендован к применению действующим СНиП, он является наиболее часто используемым способом вычислением осадок свайных оснований. При использовании способа послойного суммирования свайное основание принимается за условную монолитную конструкцию, размеры которой считаются по контуру крайних точек свайного поля. На нижеприведенной схеме размеры свайного основания представлены границами АВДС.

Рис. 1.3: График работы свай в грунте при реализации метода послойного суммированияПервоначально составляется габаритная схема основания АБСД, при расчетах используется величина уклона “а”, выводящаяся из следующих формул:φcp- усредненный угол внутреннего трения контактирующих со сваей слоев почвы, определяемый посредством геодезических изысканий;а- эпюра рассеивания нагрузок по высоте свайной опоры.После определения величины “а” производится расчет длины и ширины основания AБCД по формуле: Полученные габаритные характеристики применяются в формуле расчета давления на опорную часть фундамента (Р усп). Давление сопоставляется с удельным сопротивлением контактирующих со сваями пластов грунта (R усл.

фун). Удельное сопротивление почвы, в свою очередь, выводится по формуле:Если в результате сопоставления нагрузок и сопротивления грунта получается соблюдение условий, составляются эпюры нагрузок на сваи “σ0z”и “σбz” (приведены на схеме), и по формуле S выводится величина осадки основания.Важно: если полученная в результате расчетов величина осадки превышает предельный допустимый показатель, в проект свайного фундамента вносятся коррективы, направленные на увеличения длины применяемых опор (что приводит к передаче нагрузки от здания на более плотные, глубинные пласты почвы) и расчеты выполняются повторно.Альтернативный способ эквивалентного слоя подразумевает расчет осадки исходя из контролируемого бокового расширения почвы. В данном случае за эквивалентный слой принимается пласт почвы (hэ), который при невозможности пространственного расширения дает удельную осадку, аналогичную общей осадке равномерно нагруженного фундамента.

По простому – вместо послойного суммирования слоев используется одномерный коэффициент, совокупный для всех контактирующих со сваей пластов грунта. Мощность условного эквивалентного слоя высчитывается на основе коэфф. Пуансона, коэффициента жесткости фундамента (w) и его габаритной ширины (b) по формуле:При этом за Апринимается коэффициент, индивидуальный для каждого типа грунта: Аравно .Используемое при расчетах соотношение Aw(коэффициента грунта и жесткости фундамента) именуется величиной эквивалентного пласта, нормативные данные которого представлены в нижеприведенной таблице:

1.4: Таблица коэффициента эквивалентного пластаОсадка фундамента рассчитывается по формуле: , в которой:Ро- эксплуатационное давление на опорную часть свайного фундамента (от массы здания, снеговых и полезных нагрузок);mv- нормативный коэфф. сжимаемости почвы.Важно: при определении осадки посредством способа эквивалентного слоя значительно упрощается технология проведения расчетов.Также тут учитывается коэфф. линейного расширения грунта (коэфф.

Пуансона), который не используется в методе послойного суммирования, что дает более точные итоговые результаты.Фактическая осадка свай определяется посредством их статических испытаний. В процессе испытаний на опору гидравлическими домкратами оказывается давление и с помощью прогибомера измеряется величина осадки сваи от полученной нагрузки. Технология статических испытаний предназначена для определения критических и предельных нагрузок, которые может выдержать свайный фундамент.

Под критической нагрузкой подразумевается давление, которое приводит к резкой осадке (проваливанию) сваи в грунт, величина которой в 5 и более раз превышает осадку от ранее полученного сваей давления. Осадка предельного типа определяется по нагрузке, на 1 ступень меньшей, чем нагрузка приводящая к критической осадке.

Рис. 1.5: Процесс статического испытания свайДля проведения испытаний используются гидравлические домкраты с усилием давления от 50 до 200 тонн, измерения ведутся с точностью до 0.1 мм.

Прогибомер фиксируется на высотных реперах, которые представлены стойками, удаленными от сваи на 1-2 метра, и закрепленными на них ригелями (на ригелях посредством ступицы фиксируется измерительный прибор). Важно: на основании информации о фактической осадке и приводящих к ней нагрузкам вносятся коррективы в проект свайного фундамента.Действующие строительные нормативы не разделяют осадку фундамента на первоначальную – полученную в процессе возведения, и эксплуатационную – возникшую при работе свай в грунте. Согласно положениям СНиП № 2.02.01 – “Деформации зданий и сооружений”, величина допустимой осадки составляет:Для железобетонных зданий – 8 см;Для панельных зданий со стальным несущим каркасом – 12 см;Для кирпичныхи блочных сооружений безкаркасного типа – 10 см.Важно: осадка свайного фундамента, возникшая в процессе его строительства, отличается равномерностью – она происходит по всему пятну основания, что не приводит к деструктивным нагрузкам на возводимое сооружение.На практике кирпичные здания, фундамент которых подвергся неравномерной усадке более чем на 12 см, получают серьезные деформации, вплоть до появления на стенах и перекрытиях сквозных трещин.

Предотвратить осадку фундамента можно еще на стадии проектирования основания. Если расчеты показывают, что величина осадки превышает допустимою норму, нужно заменить висячие сваи на сваи-стойки – использовать опоры большей длины, которые работают в грунте не за счет сопротивления почвы боковым стенкам конструкции, а за счет опирания на глубинный пласт несжимаемого грунта.

Рис. 1.6: Процесс укрепления грунтов цементациейСнизить риск осадки фундамента можно и посредством увеличения сопротивления грунтов, что достигается за счет их цементации. Данный метод особенно эффективен в условиях почвы, обладающей низкой плотностью.

Его суть заключается в нагнетании в толщу грунта бетонной смеси либо силикатного раствора с помощью специальных инъекторов. Инъектор представляет собой перфорированную стальную трубу, которая погружается в почву и подключается к бетононасосу. Подача смеси ведется в пласты грунта, в которых расположена опорная часть сваи.

В результате вокруг опорной подошвы сваи, после отвердевания смеси, образуется монолитная бетонная подушка, которая предотвращает осадку фундамента под внешними нагрузками. СК “Установка Свай” занимается возведением фундаментов на железобетонных сваях.В местностях с зыбкими, слабыми грунтами предпочтительные виды фундаментов под дома и сооружения – свайный и свайно-ростверковый.Осадкасвайного фундамента определяется однимиз методов ме­ханики грунтов как дляусловного фундамента на естественномосно­вании. Границы условного фундаментаопределяются следующим об­разом (рис.3.2):- сверху – поверхностьюпланировки грунта;- снизу – плоскостьюна уровне нижних концов свай;- сбоков – вертикальными плоскостями,отстоящими от наруж­ных граней крайнихсвай на величину .Величина определяетсякак средневзвешенное значение уг­лавнутреннего трения грунтов, прорезаемыхсваями, (3.13)где и-соответственно углы внутреннего трения(для рас­четов по второму предельномусостоянию) и толщины слоев грунта,пройденных сваями от подошвы ростверка.Всобственный вес условного фундаментапри определении осадки включаются вессвай NCBиростверка ,атакже вес грунта вобъеме условного фундамента.Размерыподошвы условного фундамента определяютпо выра­жениям(3.14)(3.15)гдеb,а -размеры в пределах внешних гранейкрайних свай, м;l- глубина погружения сваи в грунт отниза ростверка, м.Определяетсяплощадь подошвы условного фундаментаАу=bуау,(3.16)18Производитсяпроверка условия, (3.17)где -расчетнаянагрузка по обрезу фундамента, кН;- вес ростверкаи свай;-весгрунта в пределах условного фундаментаАВСД;-расчетное сопротивление грунта науровне подошвы ус­ловного фундаментаАВСД, определяемого по формуле СНиП5.01.-01- 2002 [3, с.50] для размеров .Если условие(3.17) не соблюдается, то можно увеличитьрасстояние между сваями или применитьсваи большей длины.

Рис.3.2 – Схема к расчету осадки свайногофундамента

Определение осадки свайного фундамента, расчет осадки свайного фундамента

Статья расскажет о том, что такое осадка свайного фундамента, какие факторы на нее влияют, а также о том, как выполняется расчет осадки свайного фундамента.

Содержание статьи:

Осадка свайного фундамента – это изменение уровня размещения свай в грунте, возникающее в процессе их эксплуатации.

Как правило, причиной осадки становятся ошибки в расчетах устойчивости фундамента к нагрузкам, допущенные на стадии проектирования. В результате в основании используются сваи с некорректными конструктивными параметрами: недостаточной длины или сечения (если речь идет о железобетонных конструкциях), с недостаточным диаметром или количеством лопастей (в случае с винтовыми конструкциями) и т.п.

Осадка может возникать под действием следующих факторов:

недостаточная несущая способность грунта;

излишние нагрузки на фундамент от массы здания, снегового и ветрового давления, эксплуатационных воздействий.

1. Расчет осадки свайно-винтового фундамента

Расчеты по деформациям свайного фундамента сводятся к определению осадки всего фундамента и отдельной сваи.

При расчете осадок группы свай необходимо учитывать их взаимное влияние. Данный расчет является весьма сложным, и задача решается с помощью трехмерного численного моделирования условного фундамента как анизотропного массива с учетом его конечной жесткости на сдвиг по вертикальным плоскостям.

Расчет осадки одиночных свай, прорезающих слой грунта, рассматривают как линейно-деформируемое полупространство, характеризуемое модулем сдвига G2 и коэффициентом Пуассона v2. При выполнении условии l/d > G1l/G2d > 1 (где l – длина сваи, м, d – наружный диаметр поперечного сечения ствола, м) осадку для винтовой сваи считают как для одиночной сваи с уширением пяты или сваи-стойки.

1.1. Расчет осадки одиночной сваи

Согласно СП 24.13330.2011 «Свайные фундаменты» расчет осадки одиночных свай, прорезающих слой грунта с модулем сдвига G1, МПа, коэффициентом Пуассона v1 и опирающихся на грунт, рассматриваемый как линейно-деформируемое полупространство, характеризуемое модулем сдвига G2 и коэффициентом Пуассона v2, допускается производить при выполнении требований подраздела 7.2 и при условии l/d>5; G1l/G2d>1 (где l – длина сваи, м, d – наружный диаметр поперечного сечения ствола, м) по формуле:

, (7.36)

db – диаметр уширения сваи;

N – вертикальная нагрузка, передаваемая на сваю, МН;

EA – жесткость ствола сваи на сжатие, МН;

A – площадь поперечного сечения сваи;

v – коэффициент Пуассона.

Коэффициент Пуассона для грунта (коэффициент поперечного расширения или коэффициент поперечной деформации или Poisson’s ratio) – это показатель деформируемости грунта, характеризующий отношение поперечных и продольных деформаций грунта (то есть отношение относительных поперечных деформаций к относительным продольным деформациям грунта).

При отсутствии экспериментальных данных, значения коэффициента Пуассона можно принять по п.5.4.7.5 ГОСТ 12248-96:

для крупнообломочных грунтов равен 0,27;

для песка составляет от 0,30 до 0,35 (в зависимости от плотности);

для супеси составляет от 0,30 до 0,35 (в зависимости от плотности);

для суглинков составляет от 0,35 до 0,37 (в зависимости от плотности);

для твердой глины (при показателе текучести IL =0) составляет от 0,20 до 0,30 (в зависимости от плотности);

для полутвердой глины (при показателе текучести IL от 0 до 0,25) составляет от 0,30 до 0,38 (в зависимости от плотности);

для тугопластичной глины (при показателе текучести IL от 0,25 до 0,5) составляет от 0,38 до 0,45 (в зависимости от плотности);

для мягкопластичной глины (при показателе текучести IL от 0,5 до 0,75) составляет от 0,38 до 0,45 (в зависимости от плотности);

для текучепластичной глины (при показателе текучести IL от 0,75 до 1) составляет от 0,38 до 0,45 (в зависимости от плотности).

Меньшие значения коэффициента Пуассона необходимо применять при большей плотности грунта.

G – модуль сдвига, Мпа. Модулем сдвига называется характеристика деформируемости, определяемая отношением приложенного к грунту касательного напряжения к углу сдвига. Этот показатель используется при расчете устойчивости сооружений и массивов грунтов, давления грунтов на ограждения и подземные сооружения, при расчете осадок под свайными фундаментами.

Характеристики G1 и v1 принимаются осредненными для всех слоев грунта в пределах глубины погружения сваи, a G2 и v2 – в пределах 0,5 l, т.е. на глубинах от l до 1,5l от верха свай, при условии, что под нижними концами свай отсутствуют глинистые грунты текучей консистенции, органоминеральные и органические грунты.

Модуль сдвига грунта G = E / 2(1+v) допускается принимать равным 0,4E, а коэффициент kv равным 2,0 (где E – модуль общей деформации).

Таким образом, расчет осадки свайного фундамента – достаточно сложная процедура, которая требует применения специальных знаний. Пренебрежение же данными расчетами может привести к негативным последствиям в процессе эксплуатации здания/сооружения.

7.4 Расчет свай, свайных и комбинированных свайно-плитных фундаментов по деформациям

7.4.1 Расчет осадок свайных фундаментов (расчет по второй группе предельных состояний) допускается выполнять с использованием расчетных схем, основанных на модели грунта как линейно-деформируемой среды, при обязательном выполнении условия (7.2).

Осадка одиночной висячей сваи рассчитывается в соответствии с 7.4.2 и 7.4.3.

Осадка малой группы (п ≤ 25) висячих свай (свайного куста) рассчитывается в соответствии с 7.4.4 и 7.4.5 по методике, учитывающей взаимное влияние свай в кусте.

Осадка большой группы висячих свай (свайного поля) может быть определена с использованием модели условного фундамента на естественном основании в соответствии с 7.4.67.4.9.

Осадку комбинированных свайно-плитных фундаментов рекомендуется рассчитывать по 7.4.107.4.14.

Полученные расчетом значения осадок свайного фундамента не должны превышать предельных значений по условию (7.4).

Расчет свай по деформациям на совместное действие вертикальной и горизонтальной сил и момента следует выполнять в соответствии с приложением В.

При надлежащем обосновании допускается производить расчеты деформаций свайных фундаментов в нелинейной постановке с использованием апробированных моделей грунта и численных методов расчета.

Расчет осадки одиночной сваи

7.4.2 Расчет осадки одиночных свай, прорезающих слой грунта с модулем сдвига G1, МПа, коэффициентом Пуассона v1 и опирающихся на грунт, рассматриваемый как линейно-деформируемое полупространство, характеризуемое модулем сдвига G2 и коэффициентом Пуассона v2 допускается производить при выполнении требований подраздела 7.2 и при условии l/d > G1l/G2d > 1 (где l — длина сваи, м, d — наружный диаметр поперечного сечения ствола сваи, м) по формулам:

а) для одиночной висячей сваи без уширения пяты

(7.32)

где N — вертикальная нагрузка, передаваемая на сваю, МН;

β — коэффициент, определяемый по формуле

(7.33)

здесь β’ = 0,17ln(kvG1l/G2d) — коэффициент, соответствующий абсолютно жесткой свае (ЕА = ∞);

α’ = 0,17ln(kv1l/d) — тот же коэффициент для случая однородного основания с характеристиками G1 и v1;

χ = EA/G1l 2 — относительная жесткость сваи;

ЕА — жесткость ствола сваи на сжатие, МН;

λ1 — параметр, характеризующий увеличение осадки за счет сжатия ствола и определяемый по формуле

(7.34)

kv, kv1 — коэффициенты, определяемые по формуле

kv = 2,82 — 3,78v + 2,18v 2 (7.35)

соответственно при v = (v1 + v2)/2 и при v = v1

б) для одиночной сваи с уширением пяты или сваи-стойки

(7.36)

где db — диаметр уширения сваи.

Расчет осадки одиночной буронабивной сваи в билинейной постановке для расчета односвайных фундаментов см. в приложении Д.

(Опечатка. Июнь 2011 г.)

7.4.3 Характеристики G1 и v1 принимаются осредненными для всех слоев грунта в пределах глубины погружения сваи, a G2 и v2 — в пределах 0,5l, т.е. на глубинах от l до 1,5l от верха свай, при условии, что под нижними концами свай отсутствуют глинистые грунты текучей консистенции, органоминеральные и органические грунты.

Модуль сдвига грунта G = E/2(1 + v) допускается принимать равным 0,4E, а коэффициент kv равным 2,0 (где E — модуль общей деформации).

Расчетный диаметр d для свай некруглого сечения, в частности стандартных забивных свай заводского изготовления, вычисляется по формуле

(7.37)

где А — площадь поперечного сечения сваи.

Расчет осадки свайного куста

7.4.4 При расчете осадок группы свай необходимо учитывать их взаимное влияние. Дополнительная осадка сваи, находящейся на расстоянии а (расстояние измеряется между осями свай) от сваи, к которой приложена нагрузка N, равна

(7.38)

(7.39)

7.4.5 Расчет осадки i-й сваи в группе из п свай при известном распределении нагрузок между сваями производится по формуле

(7.40)

где s(N) — осадка одиночной сваи, определяемая по формуле (7.32);

dij — коэффициенты, рассчитываемые по формуле (7.39) в зависимости от расстояния между i-й и j-й сваями;

Nj — нагрузка на j-ю сваю.

В случае когда распределение нагрузки между сваями неизвестно, формула (7.40) может использоваться для расчета взаимодействия свайного фундамента с надфундаментной конструкцией. При этом удобно использовать метод сил строительной механики.

Взаимное влияние осадок кустов свай следует учитывать методом угловых точек.

Расчет осадки свайного фундамента как условного фундамента

7.4.6 Осадка большеразмерного свайного фундамента (свайного поля) подсчитывается по формуле

s = sef + Dsp + Dsc, (7.41)

где sef — осадка условного фундамента;

Dsp — дополнительная осадка за счет продавливания свай на уровне подошвы условного фундамента;

Dsc — дополнительная осадка за счет сжатия ствола свай.

7.4.7 Границы условного фундамента (см. рисунок 1) определяют следующим образом:

Рисунок 1 — Определение границ условного фундамента при расчете осадки свайных фундаментов

снизу — плоскостью АБ, проходящей через нижние концы свай;

с боков — вертикальными плоскостями АВ и БГ, отстоящими от осей крайних рядов вертикальных свай на расстоянии 0,5 шага свай (рисунок 1, а), но не более 2d (d — диаметр или сторона поперечного сечения сваи), а при наличии наклонных свай — проходящими через нижние концы этих свай (рисунок 1, б);

сверху — поверхностью планировки грунта ВГ.

Расчет осадки условного фундамента производят методом послойного суммирования деформаций линейно-деформируемого основания с условным ограничением сжимаемой толщи (см. СП 22.13330). Вертикальное нормальное напряжение szp, определяющее деформации и глубину сжимаемой толщи, подсчитывается только от действия нагрузки, приложенной к свайному фундаменту, т.е. вес грунта в пределах условного фундамента не учитывается. Начальные напряжения szи определяются с учетом отрывки котлована.

Возможен также трехмерный численный расчет осадки условного фундамента как анизотропного массива с учетом его конечной жесткости на сдвиг по вертикальным плоскостям.

Примечание — При расчете оснований опор мостов условный фундамент допускается принимать ограниченным с боков вертикальными плоскостями АВ и БГ, отстоящими от наружных крайних рядов вертикальных свай на расстоянии h (tgjII,n/4).

7.4.8 Величина осадки продавливания Dsp зависит от шага свай в свайном поле, причем шаг может быть переменным. Расчет следует выполнять применительно к цилиндрическому объему (ячейке), в пределах которого все точки находятся ближе к оси данной сваи, чем к осям остальных свай (это не относится к крайним сваям). Площадь горизонтального поперечного сечения ячейки равна а 2 , где а — шаг свайного поля в окрестности данной сваи. Грунт в объеме ячейки делится на две однородные части: в пределах длины сваи l с модулем общей деформации Е1 и коэффициентом поперечной деформации v1, а ниже — с аналогичными параметрами Е2 и v2. (В общем случае неоднородного по глубине основания эти параметры получаются осреднением, см. 7.4.3 и рисунок 2.)

Рисунок 2 — Расчетная схема метода ячейки

Внешняя нагрузка на ячейку составляет Р = pW. В случае однородного основания (Е1 = Е2, v1 = v2) осадка продавливания равна

(7.42)

где d — диаметр сваи.

Для идеальной сваи (Е1 = 0)

(7.43)

где

Осадка фундамента

У жильцов частных домов может возникнуть одна очень неприятная проблема: в фундаменте за долгое время могут появиться дефекты в виде трещин, из-за чего он начинает смещаться. Этот сдвиг или смещение имеет название «осадка фундамента». Это происходит вследствие сжатия почвенного покрова. Причины появления осадки фундамента, методы проведения диагностики осадки, расчет осадки разных видов фундамента, решение этой проблемы – все это будет обсуждаться в этой статье. Важно помнить, что при появлении трещин в основании, не нужно бояться, просто продолжайте следить за этим, пока осадка фундамента не дошла до критического состояния.

  • Причины появления осадки фундамента
  • Методы проведения диагностики осадки фундамента
  • Описание свайного фундамента
  • Осадка свайного фундамента
  • Описание ленточного монолитного фундамента
  • Как избежать осадки ленточного монолитного основания помещения

Причины появления осадки фундамента

Состав грунта – это одна из самых главных причин, из-за которой возникает осадка основания дома. Почва делится на виды и каждый обладает своей прочностью. Самыми прочными видами почвенного покроя являются скальный грунт и дисперсная почва. По-другому эти почвы называют несвязными, так как они не сохранят в себе влагу.

Определение типа грунта вручную

В основе первого вида почвы лежат монолиты, а второй вид состоит из минерального зерна различного размера. Но существуют связные виды почву, они поглощают и сохраняют в себе влагу, поэтому основной составляющей этих типов почвенного покроя является глина, из-за чего слой грунта приобретает свойство подвижности и деформации. В холодное время года, содержащаяся в таких типах почвы влага, замерзает и слой грунта расширяется. Первая причина – связный слой грунта почвы. Вторая причина – особенности конструкции основания дома. Третья причина – неправильно распределенное давление стен на фундамент. При строительстве дома следует учитывать все эти факторы, чтобы в будущем не столкнуться с данной проблемой.

Методы проведения диагностики осадки фундамента

Чтобы выявить или устранить дефекты, возникшие в основании дома, требуется определить процесс смещения фундамента и наблюдать за осадкой. Методов проведения диагностики (осадки фундамента) существует много. Какой именно использовать метод, зависит от строения дома и его составляющих.

Описание свайного фундамента

Свайные фундаменты строятся на просадочных слоях грунта, потому что они имеют очень маленькую несущую способность (факторы, которые влияют на этот параметр грунта, будет обсуждаться далее). Сваи используют для того, чтобы передать все давление здания на почву, тем самым исключая большую нагрузку на основание помещения. Бывает такое, что сваи не достают до слоя грунта, для этого используются висячие сваи. Они являются связью между грунтом и обыкновенными сваями.

Свайный фундамент может состоять из различного материала. Они могут быть сделаны из дерева, железобетона, стали. Способы погружения свай бывают разные. Сваи забиваются, набиваются и завинчиваются. На сегодняшний день чаще всего используются сваи, сделанные из железобетона. Их длина начинается с 4 метров и заканчивается 12 метрами. Такие сваи, которые сделаны из железобетона, можно встретить в индустриальной сфере. Типов свай бывает несколько:

  1. Металлические сваи. Они забиваются в почву, где имеется влага.
  2. Сваи с наличием обсадных труб. Их длина колеблется от 7 до 12 метров. Обсадные трубы помогут избежать прорыва почвы.
  3. Сваи, которые используются, когда уже скважина пробурена. После их установки, они заливаются бетоном, образуя прочное основание здания.

Сваи используют в тех местах, где слой грунта очень слабый. Они также применимы для строительства многоэтажных зданий. Но главным минусом этого материала является то, что он имеет усадку, что может привести к осадке основания помещения.

Осадка свайного фундамента

Причина осадки свайного фундамента – это нагрузка на само основание дома. Если смещение будет продолжаться, это может привести к полному разрушению конструкции. Во избежание этого, проводится расчет осадки свайного фундамента. Полученное значение сравнивают со значением осадки, которая допускается. Если оно превышает его, то фундамент нужно подвергнуть коррекции. Чтобы совершить коррекцию свайного фундамента необходимо увеличить длину свайных установок. Концы свай должны иметь опору на более прочные слои грунта. Сваи распределяют давление по всему грунту. На давление влияют несколько факторов: свойства грунта, длина свай и пространство между сваями.

Расчет осадки методом послойного суммирования

Один из способов расчета осадки свайного фундамента имеет название «послойное суммирование». Существует формула: Si = h * m * P. Из этой формулы видно, что осадка фундамента равняется сумме сжатий слоев грунта. Делается схема для расчета осадки свайного фундамента. На ней изображаются нагрузка и давление стен. Свайное основание дома делится на два вида: однослойные и двухслойные. Для обоих видов требуется грунт со средней прочностью. Для расчета осадки свайного основания дома необходимо определить характеристики грунта, сюда входит коэффициент сжимаемости и деформация (модуль). Расчет осадки можно проводить одной сваи, нескольких или всего основания здания. Но можно сделать свайный фундамент правильным. Для этого нужно знать вес и длину сооружения, а также вес всего грунта.

Следующий метод – это расчет осадки фундамента способом эквивалентного слоя. Он применяется, если невозможно провести боковое расширение. Толщина слоя грунта имеет название эквивалентный слой. Согласно этому способу, сначала необходимо определить мощность эквивалентного слоя, существует формула для ее нахождения: hэ =A· ω· b. A – это коэффициент, и он имеет зависимость от типа грунтового слоя, ω – тоже коэффициент, значение которого зависит от основания дома, его формы и жесткости, b – значение ширины основания здания. Произведение первых множителей (A и ω) составляют коэффициент эквивалентного слоя. Найдя мощность эквивалентного слоя, можно найти значение и самой осадки: S =Po· hэ · mv. Главным преимуществом способа расчета осадки эквивалентного слоя является то, что можно определить коэффициент эквивалентного слоя для каждого вида грунта в отличии от метода послойного суммирования.

Метод эквивалентного слоя

Описание ленточного монолитного фундамента

Ленточный фундамент – это основание под стенами здания, давление которых распределяется по всему фундаменту. Ленточный фундамент заливается в тех местах, где конструкция идет вместе с несущими стенами. Ленточный фундамент – прочное и твердое основание. Данный вид фундамента имеет два вида основания: один – сборный, другой – свайный. У сборного фундамента все давление идет на слой грунта. У второго вида ленточные ростверки, сделанные из железобетона, дают нагрузку на сваи. Наиболее распространены два материала, из которого делается ленточный фундамент: железобетон и бетон. Монолитные ленточные фундаменты используются чаще всего, когда требуется провести расширение подушки фундамента. Расширение необходимо тогда, когда слой почвенного покроя обладает невысокой несущей способностью, а также при наличии в почве подземных вод.

Уменьшить давление на ленточный монолитный фундамент очень просто. Чрезмерная нагрузка на основание дома, в дальнейшем может привести к его осадке. Чтобы этого избежать, достаточно высоту фундамента сделать в полтора больше, чем ширину. После этой процедуры, нагрузка остальной конструкции и предметов, находящихся внутри дома, значительно снизится.

Для более прочного основания необходимо, чтобы стенки фундамента были гораздо шире, чем стены конструкции здания, примерно на 15 сантиметров.

Как избежать осадки ленточного монолитного основания помещения

Причины возникновения осадки ленточного фундамента могут быть разные:

  1. Была неправильно совершена установка несущей способности грунтового слоя, из-за чего совершается недопустимое давление.
  2. Основание лежит на неподходящем грунте.

Последствия осадки ленточного фундамента

Весь расчет постройки ленточного основания дома можно разделить на три этапа:

  1. Во-первых, необходимо определить вид грунта, на котором будет строиться фундамент дома. Методов по определению типа грунта существует множество. Самый легкий из них – по всей территории, где будет строиться фундамент, нужно сделать определенное количество ям, после чего можно увидеть срез почвы. Хотя на одном участке может быть несколько типов почвенного покроя. После определения всех типов грунта, вы сможете построить фундамент с нужной глубиной. Обычный тип грунта обладает несущей способностью 2-2,1кг/см2. На данное значение и нужно ориентироваться при строительстве. Если по вашим расчетам вес здания превышает эту норму, просто необходимо сделать увеличение ленты. Это делается, потому что в это значение и входит расчет осадки ленточного основания дома в следующие годы.
  2. Во-вторых, необходимо определить массу всей постройки. В массу входят не только стены, но и различные предметы, которые находятся внутри жилого помещения. А также следует учитывать вес снега, который будет находиться на крыше, потому что масса снега может достигать более одной тонны. Поэтому нужно проверить ленточный фундамент дома по трем характеристикам. Необходимо провести проверку на несущую способность определенного типа почвенного покроя. Благодаря этой проверке будет понятно, какого размера должно быть основание помещения. Чтобы определить несущую способность грунта, следует учесть различные факторы, которые могут оказывать влияние на почву: влажность, плотность, возможное наличие в почве подземных вод (обычно они находятся на глубине 30 метров).
  3. В-третьих, следует провести корректировку размеров основания здания. Это делается для того, чтобы залить нужное количество бетона. Объем бетона равен кубатуре основания помещения.

Соблюдение всех этих условий поможет вам избежать осадки ленточного фундамента на несколько десятков лет.

Подведем итог. Осадку фундамента лучше всего избежать, чем бороться с ней в будущем. Важно соблюдать несколько правил при строительстве основания дома. При допущенной осадке, следует пользоваться двумя методами по ее расчету: послойное суммирование и способ эквивалентного слоя. Формулы этих способов помогут вам избавиться от осадки фундамента.

Расчет осадки свайного фундамента как условного фундамента.

Осадка большеразмерного свайного фундамента (свайного поля) подсчитывается по формуле:

где sef — осадка условного фундамента;

Δsp — дополнительная осадка за счет продавливания свай на уровне подошвы условного фундамента;

Δsс — дополнительная осадка за счет сжатия ствола свай.

Границы условного фундамента (см. рисунок 2.18) определяют следующим образом:

Рисунок 2.18. Определение границ условного фундамента при расчете осадки свайных фундаментов

снизу — плоскостью АБ, проходящей через нижние концы свай;

с боков — вертикальными плоскостями АВ и БГ, отстоящими от осей крайних рядов вертикальных свай на расстоянии 0,5 шага свай (рисунок 2.18, а), но не более 2d (d — диаметр или сторона поперечного сечения сваи), а при наличии наклонных свай — проходящими через нижние концы этих свай (рисунок 2.18, б);

сверху — поверхностью планировки грунта ВГ.

Расчет осадки условного фундамента производят методом послойного суммирования деформаций линейно-деформируемого основания с условным ограничением сжимаемой толщи (см. Свод правил СП 22.1333.2011. Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*.

Вертикальное нормальное напряжение σ, определяющее деформации и глубину сжимаемой толщи, подсчитывается только от действия нагрузки, приложенной к свайному фундаменту, т.е. вес грунта в пределах условного фундамента не учитывается. Начальные напряжения σ определяются с учетом отрывки котлована.

Возможен также трехмерный численный расчет осадки условного фундамента как анизотропного массива с учетом его конечной жесткости на сдвиг по вертикальным плоскостям.

Примечание — При расчете оснований опор мостов условный фундамент допускается принимать ограниченным с боков вертикальными плоскостями АВ и БГ, отстоящими от наружных крайних рядов вертикальных свай на расстоянии h (tgφll,n/4).

Величина осадки продавливания Δsp зависит от шага свай в свайном поле, причем шаг может быть переменным. Расчет следует выполнять применительно к цилиндрическому объему (ячейке), в пределах которого все точки находятся ближе к оси данной сваи, чем к осям остальных свай (это не относится к крайним сваям).

Площадь горизонтального поперечного сечения ячейки равна а 2 , где а — шаг свайного поля в окрестности данной сваи. Грунт в объеме ячейки делится на две однородные части: в пределах длины сваи l с модулем общей деформации Е1 и коэффициентом поперечной деформации v1, а ниже — с аналогичными параметрами Е2 и v2. (В общем случае неоднородного по глубине основания эти параметры получаются осреднением, см. рисунок 2.)

Рисунок 2.19. Расчетная схема метода ячейки

Внешняя нагрузка на ячейку составляет Р = pΩ. В случае однородного основания (Е1 = Е2, v1 = v2) осадка продавливания равна

(2.18)

где d — диаметр сваи.

Для идеальной сваи (Е1 = 0)

(2.19)

где .

В общем случае 0

5. Определение несущей способности сваи по грунту. Расчетный метод с использо ванием характеристик физического состояния грунтов.

6. Метод пробных статических нагрузок (статический метод). Понятие об «отды-

7. Динамический метод с использованием «отказа» сваи. Теоретические основы метода. Остаточный и упругий «отказ».

8. Метод зондирования грунтов (общее представление).

9. Анализ достоинств и недостатков рассмотренных методов.

10. Характерные ошибки при использовании динамического метода и объективные причины его «старения». Область использования методов определения несущей способности сваи по грунту.

11. Расчетная нагрузка на сваю. Особенности работы висячих свай в кусте.

12. Правила компоновки свай в кусте, при ленточном расположении и в свайном поле.

13. Работа свай в кусте при внецентренном загружении.

14. «Негативное» трение грунта и его учет при определении несущей способности сваи.

15.Расчет основания свайного фундамента по деформациям. Расчет осадки основания при кустовом, ленточном и при одиночном расположении свай по нормативным методикам СНиП 2.02.03-85 и СП24.1333.2011.

16. Особенности расчета осадки в случае действия «негативного» трения грунта. О

Ссылка на основную публикацию
Adblock
detector