2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Классификация и принцип работы трансформатора тока

Устройство и принцип работы трансформатора тока

Время на чтение:

Трансформатор тока (ТТ) — статическое электромагнитное устройство, где первичная обмотка подсоединена к источнику питания, а вторая — к измерительным или защитным аппаратам, обладающим малым сопротивлением. Преобразователи широко применяются для измерения величины тока и в агрегатах релейной защиты энергетических систем. Они обеспечивают полную безопасность проведения измерений в высоковольтных линиях.

Особенности конструкции

При работе трансформатора тока вторичная обмотка всегда находится под нагрузкой, сопротивление которой регулируется требованиями к точности коэффициента трансформации. Допускается незначительное отклонение сопротивления от указанного в паспорте устройства.

Если произойдет увеличение нагрузки, то во второй обмотке резко возрастет напряжение, что может привести к пробою изоляции и поломке устройства. Такая ситуация создает угрозу безопасности сотрудникам, которые обслуживают электрический прибор. В устройство трансформатора тока входят:

  • основание;
  • магнитопровод (сердечник);
  • первичная обмотка;
  • вторичная обмотка;
  • клеммник для подсоединения кабеля от источника питания;
  • заземляющий контакт.

Первичная обмотка изготавливается в виде катушки, закрепленной на магнитопроводе, или как шина. Согласно конструктивного исполнения в некоторых устройствах нет встроенной первичной катушки, а дополняется она обслуживающим персоналом путем соединения отдельного провода через специальное окно.

Корпус устройства выполняет роль изоляции и предохранения обмоток от внешних повреждений. В последних моделях устройств сердечники изготавливаются из нанокристаллических сплавов, которые значительно увеличивают класс точности прибора.

Из-за больших потерь в сердечнике устройство начинает сильно нагреваться, что приводит к износу или выходу из строя его изоляции. Вторая обмотка в разомкнутом состоянии также создает негативное явление, так как происходит перегрев и выгорание магнитного провода.

Основной характеристикой прибора считается коэффициент трансформации, который обозначает отношение номинального тока в первичной обмотке к такому же значению во вторичной. Реальное значение этого коэффициента несколько отличается от номинального, что объясняется степенью погрешности прибора.

Связано это с тем, что в магнитных конструкциях имеются потери, связанные с намагничиванием и нагревом магнитопровода. Чтобы несколько сгладить эти погрешности производители используют витковую коррекцию.

Назначение устройства

По своему назначению трансформаторы тока относятся к специальным вспомогательным устройствам, применяемых в комплексе с различной измерительной аппаратурой и защитными механизмами в сетях переменного тока.

Принципом работы трансформатора тока считается преобразование любых величин, которые приобретают более воспринимаемые значения для получения информации и обеспечения питания защитных реле. Благодаря изоляции аппаратов, сотрудники обслуживающей организации надежно защищены от поражения током. Все виды трансформаторов могут служить для двух функций:

  1. Измерение силы тока в цепи — с их помощью передаются данные на измерительные приборы, которые подключены ко вторичной обмотке. В этом случае трансформатор может преобразовать ток высокой величины в более приемлемые параметры.
  2. Предохранительные действия — устройства в первую очередь передают данные на защитные аппараты и приборы управления. С помощью трансформаторов электрические показатели преобразуются для питания релейного оборудования.

По своему назначению и принципу действия трансформаторы тока способствуют подсоединению измерительных приборов к энергетическим линиям высокого напряжения, когда нет возможности подключить их напрямую. Они нужны для передачи снятых показаний на аппаратуру измерения, которая подключается ко вторичной обмотке.

Кроме того, преобразователи проводят наблюдение за состоянием электрического тока в цепи, к которому они подключены. При подсоединении к силовой автоматической защите устройство проводит мониторинг сетей, наличие и состояние заземления. Если ток достигает максимального значения, то автоматически включается защита и останавливается работа всего оборудования.

Принцип действия

Работает трансформатор тока на основе закона электромагнитной индукции. Из внешнего источника питания поступает напряжение на клеммы устройства, которые непосредственно связаны с первичной обмоткой, обладающей конкретным количеством витков. В результате образуется магнитный поток вокруг катушки, который улавливает сердечник.

Благодаря этому, потери показаний в процессе преобразования будут незначительными. Когда ток пересекает вторичную обмотку, то магнитный поток активирует электродвижущую силу, под влиянием которой происходит преодоление сопротивления катушки и нагрузки на выходе.

Параллельно с этим процессом происходит снижение напряжения со вторичной обмотки. Если происходит короткое замыкание во вторичной обмотке или подключение к ней нагрузки, то под воздействием электродвижущей силы в ней возможно определение вторичного тока.

Классификация приборов

Все разновидности агрегатов классифицируются в зависимости от конструкции и того, какими техническими показателями обладают. Кроме измерительных и защитных трансформаторов, бывают промежуточные виды этих преобразователей. В этом случае прибор подключается для проведения измерения в цепь релейной защиты.

Выделяются лабораторные виды преобразователей, которые обладают повышенной точностью измерения и множеством коэффициентов трансформации. Токовые трансформаторы подразделяются:

  1. По способу установки — преобразователь предназначен для наружного и внутреннего монтажа. Компактные модели могут быть переносными или встраиваются в машины и электрические аппараты. Наружный и внутренний монтаж подразумевает проходной или опорный способ установки.
  2. В зависимости от типа первичной обмотки — оборудование подразделяется на одновитковые, стержневые, многовитковые, катушечные и шинные устройства.
  3. При изолировании трансформаторов применяются: бакелит, фарфор и другие материалы. Некоторые марки устройств для изоляции заливаются компаундом.

От того как устроен преобразователь, он может иметь одну или две ступени. Эксплуатационное напряжение устройств находится в диапазоне до 1 тыс. В и выше. Все необходимые технические данные имеют буквенные, цифровые обозначения и присутствуют на соответствующих бирках.

Популярные модели

Любая выпускаемая марка прибора обладает отдельными параметрами и техническими характеристиками. Отечественные производители выпускают большое количество этих устройств. К ним относятся:

  1. ТОЛ-НТЗ-10−01 — выпускается Невским трансформаторным заводом «Волхов» и используется для передачи показаний к измерительной аппаратуре. Кроме того, его применяют в электрических цепях с устройствами защиты и управления. Преобразователь выпускается в виде опорной конструкции второй категории размещения. Прибор применяется в сетях с напряжением до 10 кВ и обладает сроком службы до 30 лет.
  2. ТОП-0,66 — применяются в энергетических сетях переменного тока с напряжением до 0,66 кВ. Корпус устройства изготовлен из негорючего материала. Эксплуатация агрегата возможна в диапазоне температур от -45 до +50 °C и в любом положении. Первичная шина трансформатора состоит из меди, покрытой оловом.
  3. ВВ, ВВО — проходные шинные трансформаторы тока, изготовленные в компаундном корпусе. Используют приборы в сетях переменного тока напряжением до 24 кВ. Обладают механическим изменением коэффициента трансформации на обеих обмотках.

Трехфазные устройства подключаются в сеть «треугольником» или «звездой». В первом случае удается получить большое значение тока во вторичной обмотке, а во втором — возможно отследить значение тока в каждой фазе.

Принцип действия ТТ и их назначение

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют существенные отличия в работе ТТ и ТН.

Во-первых, первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.

Во-вторых, ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.

В-третьих, не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Сохраните в закладки или поделитесь с друзьями

Трансформаторы тока. Виды и устройство. Назначение и работа

В системе обеспечения электрической энергией трансформаторы выполняют различные функции. Конструкции классического вида применяются для изменения определенных свойств тока до значений, наиболее подходящих для осуществления измерений. Существуют и другие виды трансформаторов, которые выполняют задачи по корректировке свойств напряжения до значений, подходящих наилучшим образом для последующего распределения и передачи электроэнергии. Трансформаторы тока согласно своему назначению имеют особенности конструкции, и перечень основных и вспомогательных функций.

Назначение

Основной задачей такого трансформатора является преобразование тока. Он корректирует свойства тока с помощью первичной обмотки, подключенной в цепь по последовательной схеме. Вторичная обмотка измеряет измененный ток. Для такой задачи установлены реле, измерительные приборы, защита, регуляторы.

По сути дела, трансформаторы тока – это измерительные трансформаторы, которые не только измеряют, но и осуществляют учет с помощью приборов. Запись и сохранение рабочих параметров тока нужно для рационального применения электроэнергии при ее транспортировке. Это одна из функций трансформатора тока. Модели конструкций бывают преобразующего типа и силовые варианты исполнений.

Устройство

Обычно все варианты исполнений трансформаторов подобного вида снабжены магнитопроводами с вторичной обмоткой, которая при эксплуатации нагружена определенными значениями параметров сопротивления. Выполнение показателей нагрузки важно для дальнейшей точности измерений. Разомкнутая цепь обмотки не способна создавать компенсации потоков в сердечнике. Это дает возможность чрезмерному нагреву магнитопровода, и даже его сгоранию.

С другой стороны, магнитный поток, образуемый первичной обмоткой, имеет отличие в виде повышенных эксплуатационных характеристик, что также приводит к перегреву магнитопровода. Сердечник трансформатора тока изготавливают из нанокристаллических аморфных сплавов. Это вызвано тем, что трансформатор может работать с более широким интервалом эксплуатационных величин, которые зависят от класса точности.

Отличие от трансформатора напряжения

Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.

Читать еще:  Области применения бесшовных труб из нержавеющей стали

Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.

Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.

Виды
Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:
  • Сухие.
  • Тороидальные.
  • Высоковольтные (масляные, газовые).

У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.

Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.

Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.

Принцип работы и применение

При эксплуатации в цепях с большим током появляется необходимость использовать небольшие устройства, которые бы помогали контролировать нужные параметры тока бесконтактным методом. Для таких задач широко применяются токовые трансформаторы. Они измеряют ток, а также выполняют много вспомогательных функций.

Такие трансформаторы производятся в значительном количестве и имеют разные формы и модели исполнения. Отличительными параметрами этих устройств является интервал измерения, класс защиты устройства и его конструкция.

В настоящее время новые трансформаторы тока работают по простому методу, который был известен в то время, когда появилось электричество. При действии с нагрузкой в проводе образуется электромагнитное поле, улавливающееся чувствительным прибором (трансформатором тока). Чем сильнее это поле, тем больший ток проходит в проводе. Нужно только рассчитать коэффициент усиления прибора и передать сигнал в управляющую цепь, либо в цепь контроля.

Трансформаторы выполняют функцию рамки на силовом проводе и реагируют на значение сети питания. Современные измерительные трансформаторы выполнены из большого числа витков, имеют хороший коэффициент трансформации. Во время настройки устройства определяют вольтамперные свойства для расчета точки перегиба кривой. Это нужно для выяснения участка графика с интервалом устойчивости функции трансформатора, который также имеет свой коэффициент усиления.

Кроме задач измерения, измеритель дает возможность разделить цепи управления и силовые цепи, что является важным с точки зрения безопасности. Применяя современные трансформаторы тока, получают сигнал небольшой мощности, не опасный для человека и удобный в работе.

В качестве нагрузки такого устройства может быть любой прибор измерения, который может работать с ним. При большом расстоянии оказывает влияние внутреннее сопротивление линии. В этом случае прибор калибруют. Также, сигнал можно передавать в цепь защиты и управления на основе электронных приборов.

С помощью них производят аварийное отключение линий. Приборы производят контроль сети, определяют нужные параметры. При проектировании встает задача по подбору прибора для измерения и контроля. Трансформаторы выбирают по средним параметрам сети и конструкции прибора измерения. Чаще всего мощные установки комплектуются своими измерительными устройствами.

На современном производстве широко применяются измерительные трансформаторы. Также они нашли применение и в обыденной жизни. Чувствительные приборы осуществляют защиту дорогостоящего оборудования, создают безопасные условия для человека. Они работают в электроцепях, создавая контроль над эксплуатационными параметрами.

Коэффициент трансформации

Этот коэффициент служит для оценки эффективности функционирования трансформатора. Его значение по номиналу дается в инструкции к прибору. Коэффициент означает отношение тока в первичной обмотке к току вторичной обмотки. Это значение может сильно меняться от числа секций и витков.

Нужно учитывать, что этот показатель не всегда совпадает с фактической величиной. Есть отклонение, определяемое условиями работы прибора. Назначение и метод работы определяют значения погрешности. Но этот фактор также не может быть причиной отказа от контроля коэффициента трансформации. Имея значение погрешности, оператор сглаживает ее аппаратурой специального назначения.

Установка

Простые трансформаторы тока, работающие на шинах, устанавливаются очень просто, и не требуют инструмента или техники. Прибор ставится одним мастером при помощи крепежных зажимов. Стационарные требуют оборудования фундамента, монтажа несущих стоек. Каркас крепится сваркой. К этому каркасу монтируется аппаратура. Комплект оснащения зависит назначение устройства и его особенности.

Подключение

Чтобы облегчить процесс соединения проводов с устройством, изготовители маркируют комплектующие детали цифровым и буквенным обозначением. С помощью такой маркировки операторы, которые обслуживают устройство, могут легко сделать соединение элементов.

Способ подключения взаимосвязан с устройством, принципом работы и назначением прибора. Также оказывает влияние и схема обслуживаемой сети. Трехфазные линии с нейтралью предполагают установку прибора только на двух фазах. Эта особенность вызвана тем, что электрические сети на напряжение 6-35 киловольт не оснащены нулевым проводом.

Контроль

Это мероприятие состоит из разных операций: визуальный осмотр, дается оценка всей конструкции, проверяется маркировка, паспортные данные и т.д. Далее, осуществляется размагничивание трансформатора с помощью медленного повышения тока на первичной обмотке. Далее, величину тока уменьшают.

Затем готовят главные мероприятия по измерению параметров. Поверка основывается на оценке правильности полярности клемм катушек по нормам, также определяют погрешность с дальнейшей сверкой с паспортными данными.

Безопасность

Основные опасности при функционировании измерительных трансформаторов обусловлены качеством намотки катушек. Необходимо учитывать, что под витками действует основа из металла, которая в открытом виде создает опасность и угрозу для обслуживающего персонала.

Поэтому создается график обслуживания, по которому проводится периодическая проверка устройства. Персонал обязан следить за состоянием обмоток катушек. Перед проведением проверки трансформатор отключается и подключаются шунтирующие закоротки и заземление обмотки.

Силовые трансформаторы: определение, классификация и принцип работы

Наиболее распространенными электрическими устройствами в промышленности и в быту являются трансформаторы. Их назначение – передача мощности внутри несогласованной электрической цепи между ее различными схемами. Применяются в тех случаях, когда требуется понизить или повысить напряжение между источником энергии и потребителем. Также трансформаторы включены в схемы блоков питания, преобразующих переменный ток в постоянный. В основе работы трансформаторов лежит их способность передавать электроэнергию между контурами посредством магнитной индукции.

Силовые трансформаторы — электромагнитные устройства, предназначенные для преобразования напряжений переменного тока, сохраняя при этом его частоту, а также для преобразования самой системы электроснабжения.

Конструкция и устройство силовых трансформаторов

Основной частью каждого силового трансформатора является его сердечник с несколькими обмотками, изготовленный из ферромагнитного материала. Как правило, это тонкие листы специального трансформаторного железа, обладающего магнитомягкими свойствами. Листы укладываются таким образом, чтобы форма стержней под обмотками в сечении была приближенной к кругу. Для повышения КПД устройства и снижения потерь, целые листы перекрывают стыки между отдельно взятыми пластинами.

Трансформаторная обмотка выполняется, как правило, из медного провода с прямоугольным или круглым сечением. Каждый виток изолирован от самого магнитопровода, а также от соседних витков. Для циркуляции охладителя, между обмотками и отдельными ее слоями предусматриваются технические пустоты.

Каждый трансформатор имеет как минимум две обмотки: первичную (на нее подается электрический ток) и вторичную (ток снимается после преобразования его напряжения).

Принцип работы

Принцип работы любого силового трансформатора заключается в явлении электромагнитной индукции. На первичную обмотку подается переменный ток, который образует в магнитопроводе переменный магнитный поток. Это происходит за счет его замыкания на магнитопроводе и образования сцепления между обмотками, индуцируя ЭДС. Нагрузка, подключенная ко вторичной обмотке, приводит к образованию в ней напряжения и тока.

Конструктивно, для получения любого напряжения на вторичной обмотке, используется необходимое соотношение витков между обмотками. Силовой трансформатор обладает свойством обратимости. Иными словами, он может быть использован и для повышения, и для понижения напряжения. В большинстве случаев силовой трансформатор применятся для решения определенных задач. Например, конкретно повышать или понижать напряжение. У повышающего трансформатора напряжение на первичной обмотке ниже, чем на вторичной.

Классификация силовых трансформаторов

В зависимости от класса напряжения и полной потребляемой мощности, силовые трансформаторы условно делятся на следующие категории:

До 100 кВА, до 35кВ;

100 – 1000 кВА, до 35кВ;

1000 – 6300 кВА, до 35кВ;

Более 6300кВА, до 35кВ;

До 32 000 кВА, 35 – 110 кВ;

32 000 – 80 000 кВА, до 330 кВ;

80 000 – 200 000 кВА, до 330 кВ;

Более 200 000 кВА, более 330 кВ.

Виды силовых трансформаторов

Силовые трансформаторы можно разделить на несколько видов, основываясь на следующих характеристиках и показателях:

Тип охлаждения. Различают сухие и масляные трансформаторы. Первый вариант имеет воздушное охлаждение, используется там, где повышены требования к экологии и пожаробезопасности. Второй вариант представляет собой корпус, заполненный маслом с диэлектрическими свойствами, в который погружен сердечник с обмотками;

Климатическое исполнение: наружные и внутренние варианты;

Количество фаз. Бывают трехфазные (наиболее распространенные) и однофазные;

Количество обмоток. Различают двухобмоточные и многообмоточные варианты;

Назначение: повышающие и понижающие.

Дополнительным критерием служит наличие или отсутствие регулятора выходного напряжения.

Элементы силового трансформатора

Конструкция силового трансформатора подразумевает наличие следующих элементов:

Силовые вводы – устройства, через которые подается нагрузка. Могут быть расположены внутри изделия или снаружи. Вводы изолированы различными специальными материалами, отличаются по типу изоляции и конструкции;

Охладители. Для мощных силовых трансформаторов предусматривается масляная система охлаждения. Охлаждение самого же масла производится посредством радиаторов, гофрированного бака, принудительной вентиляции, масляно-водных охладителей или циркуляционными насосами;

Регуляторы выходного напряжения – устройства, предназначенные для изменения коэффициента трансформации. Могут срабатывать как под действием определенной нагрузки, так и без нее (в зависимости от конструкции). По сути, регуляторы добавляют, либо уменьшают в обмотке количество ее витков.

Силовые трансформаторы могут быть оснащены дополнительным навесным оборудованием:

Газовое реле – устройство с функцией защиты. Если трансформатор работает нестабильно, масло разлагается на составляющие с выделением газа. Газовое реле либо отключает трансформатор, либо оповещает предупреждающими сигналами;

Индикаторы температуры – датчики, производящие замеры температуры масла;

Влагопоглотители – устройства, поглощающие образуемый под защитной крышкой конденсат, тем самым предотвращая его попадание в масло;

Система регенерации масла;

Автоматическая система защиты от повышения давления охладителя;

Индикатор уровня масла.

Параметры силового трансформатора

Номинальная мощность. Для трансформатора с двумя обмотками параметр равен мощности каждой из них. Для трехобмоточного варианта с разной мощностью обмоток параметр равен большему из показателей;

Номинальное напряжение обмоток – характерный параметр для холостой работы;

Номинальный ток – показатель, при котором разрешается длительная эксплуатация устройства;

Напряжение короткого замыкания — характеристика полного сопротивления обмоток.

Потери короткого замыкания;

Ток холостого хода – потери материала магнитопровода (реактивные и активные);

Потери тока холостого хода;

Как выбрать силовой трансформатор

Выбор силового трансформатора для эксплуатации на предприятиях основан на подборе мощности, а также в соответствии с требованиями к надежности питания. Чтобы обеспечить бесперебойное питание, в некоторых случаях требуется установка нескольких трансформаторов. Мощность каждого устройства подбирается таким образом, чтобы при выходе его из строя, другие устройства были способны взять на себя функции этого недостающего звена, с учетом возможных перегрузок.

Еще один важный критерий – наличие защиты:

От внутренних повреждений. Обеспечивается устройствами, контролирующими наличие газов, температуру, давление и уровень масляного охладителя;

От перегрузок. Используется так называемая дифференциальная защита, когда на каждой фазе установлены трансформаторы тока.

Ремонт и техническое обслуживание

Надежность силовых трансформаторов напрямую зависит от качества и своевременности их обслуживания. Устройства, установленные в помещениях, где работает персонал предприятия, подвергаются ежедневному осмотру с контролем показателей уровня масла, состояния поглотителя и устройств регенерации. Кроме того, проверяется целостность корпуса и основных элементов. Трансформаторы в помещениях без персонала осматриваются раз в месяц, а трансформаторные пункты – дважды в год.

Внеплановый осмотр силового трансформатора и его систем защиты проводится при резком изменении температуры окружающего воздуха, а также при аварийных режимах. Периодическому обслуживанию подвергаются и устройства регулировки напряжения. Причина – окисление контактных групп, что приводит к возрастанию их переходного сопротивления. Перед сезонными изменениями нагрузки (обычно дважды в год) устройство отключается от потребителей и питания, после чего регулятор напряжения переводится последовательно во все возможные положения. Процедура способствует разрушению пленки окислов.

Лабораторный анализ масла производится каждый год при капитальном ремонте. Если масло не удовлетворяет требованиям при визуальном осмотре (цвет) или по данным обследования, производится его замена или доливка.

ЭЛЕКТРИЧЕСКИЕ ТРАНСФОРМАТОРЫ

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения.

Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Читать еще:  Гидроизоляция между фундаментом и кладкой

Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2 , где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1,U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.

Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.

Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.

Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

ОБЛАСТЬ ПРИМЕНЕНИЯ

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.

В зависимости от назначения трансформаторы делят на:

Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.

Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.

Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Трансформаторы: назначение, классификация, номинальные данные трансформаторов

Трансформаторы — электромагнитные статические преобразователи электрической энергии. Трансформаторами называются электромагнитные аппараты, служащие для преобразования переменного тока одного напряжения в переменный ток другого напряжения при той же частоте и для передачи электрической энергии электромагнитным путем из одной цепи в другую.

«Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования одной — первичной — системы переменного тока в другую — вторичную той же частоты, имеющую в общем случае другие характеристики, в частности другое напряжение и другой ток» (Пиотровский Л. М. Электрические машины).

Основное назначение трансформаторов — изменять напряжение переменного тока. Трансформаторы применяются также для преобразования числа фаз и частоты.

Трансформаторами тока называются аппараты, предназначенные для преобразования тока любой величины в ток, допустимый для измерений нормальными приборами, а также для питания различных реле и обмоток электромагнитов. Число витков вторичной обмотки трансформатора тока w2 > w1.

Особенностью трансформаторов тока является их работа в режиме, близком к короткому замыканию, так как их вторичная обмотка всегда замкнута на небольшое сопротивление.

Трансформаторами напряжения называются аппараты, предназначенные для преобразования переменного тока высшего напряжения в переменный ток низшего напряжения и питания параллельных катушек измерительных приборов и реле. Принцип действия и устройства трансформаторов напряжения аналогичен принципу работы силовых трансформаторов. Число витков вторичной обмотки w2

Принцип действия трансформаторов напряжения:

Особенность работы измерительного трансформатора напряжения заключается в том, что его вторичная обмотка всегда оказывается замкнутой на большое сопротивление, и трансформатор работает в режиме, близком к режиму холостого хода, так как подключаемые приборы потребляют незначительный ток.

Наибольшее распространение имеют силовые трансформаторы напряжения , которые выпускаются электротехнической промышленностью на мощности свыше миллиона киловольт-ампер и на напряжения до 1150 — 1500 кВ.

Конструкция силового трансформатора:

Для передачи и распределения электрической энергии необходимо повысить напряжение турбогенераторов и гидрогенераторов, установленных на электростанциях, с 16 — 24 кВ до напряжений 110, 150, 220, 330, 500, 750 и 1150 кВ, используемых в линиях передачи, а затем снова понизить до 35; 10; 6; 3; 0,66; 0,38 и 0,22 кВ, чтобы использовать энергию в промышленности, сельском хозяйстве и быту.

Так как в энергетических системах имеет место многократная трансформация, мощность трансформаторов в 7 — 10 раз превышает установленную мощность генераторов на электростанциях.

Силовые трансформаторы в выпускаются в основном на частоту 50 Гц.

Трансформаторы малой мощности широко используются в различных электротехнических установках, системах передачи и переработки информации, навигации и других устройствах. Диапазон частот, на которых могут работать трансформаторы, — от нескольких герц до 105 Гц.

По числу фаз трансформаторы делятся на однофазные, двухфазные, трехфазные и многофазные. Силовые трансформаторы выпускаются в основном в трехфазном исполнении. Для применения в однофазных сетях выпускаются однофазные трансформаторы.

Классификация трансформаторов по числу и схемам соединения обмоток

Трансформаторы имеют две или несколько обмоток, индуктивно связанных друг с другом. Обмотки, потребляющие энергию из сети, называются первичными . Обмотки, отдающие электрическую энергию потребителю, называются вторичными .

Многофазные трансформаторы имеют обмотки, соединенные в многолучевую звезду или многоугольник. Трехфазные трансформаторы имеют соединение в трехлучевую звезду и треугольник.

Схемы соединения обмоток силовых трансформаторов:

Повышающие и понижающие трансформаторы

В зависимости от соотношения напряжений на первичной и вторичной обмотках трансформаторы делятся на повышающие и понижающие . В повышающем трансформаторе первичная обмотка имеет низкое напряжение, а вторичная — высокое. В понижающем трансформаторе , наоборот, вторичная обмотка имеет низкое напряжение, а первичная — высокое.

Трансформаторы, имеющие одну первичную и одну вторичную обмотки, называются двухобмоточными . Достаточно широко распространены трехобмоточные трансформаторы , имеющие на каждую фазу три обмотки, например две на стороне низкого напряжения, одну — на стороне высокого напряжения или наоборот. Многофазные трансформаторы могут иметь несколько обмоток высокого и низкого напряжения.

Классификация трансформаторов по конструкции

По конструкции силовые трансформаторы делят на два основных типа — масляные и сухие .

В масляных трансформаторах магнитопровод с обмотками находится в баке, заполненном трансформаторным маслом, которое является хорошим изолятором и охлаждающим агентом.

Сухие трансформаторы охлаждаются воздухом. Они применяются в жилых и промышленных помещениях, в которых эксплуатация масляного трансформатора является нежелательной. Трансформаторное масло является горючим, и при нарушении герметичности бака масло может повредить другое оборудование. Подробнее про этот вид трансформаторов читайте здесь: Сухие трансформаторы

  • Автотрансформатор (для однофазных О, для трехфазных Т) — А
  • Расщепленная обмотка низшего напряжения — Р
  • Защита жидкого диэлектрика с помощью азотной подушки без расширителя — З
  • Исполнение с литой изоляцией — Л
  • Трех обмоточный трансформатор — Т
  • Трансформатор с РПН — Н
  • Сухой трансформатор с естественным воздушным охлаждением (обычно вторая буква в обозначении типа), либо исполнение для собственных нужд электростанций (обычно последняя буква в обозначении типа) — С
  • Кабельный ввод — К
  • Фланцевый ввод (для комплектных ТП) — Ф

Силовой масляный трансформатор ТМ-160 (250) кВА

Системы охлаждения сухих трансформаторов:

  • Естественное воздушное при открытом исполнении — С
  • Естественное воздушное при защищенном исполнении — СЗ
  • Естественное воздушное при герметичном исполнении — СГ
  • Воздушное с принудительной циркуляцией воздуха — СД

Системы охлаждения масляных трансформаторов:

  • Естественная циркуляция воздуха и масла — М
  • Принудительная циркуляция воздуха и естественная циркуляция масла — Д
  • Естественная циркуляция воздуха и принудительная циркуляция масла с ненаправленным потоком масла — МЦ
  • Естественная циркуляция воздуха и принудительная циркуляция масла с направленным потоком масла — НМЦ
  • Принудительная циркуляция воздуха и масла с ненаправленным потоком масла — ДЦ
  • Принудительная циркуляция воздуха и масла с направленным потоком масла — НДЦ
  • Принудительная циркуляция воды и масла с ненаправленным потоком масла — Ц
  • Принудительная циркуляция воды и масла с направленным потоком масла — НЦ

Системы охлаждения трансформаторов с негорючим жидким диэлектриком:

  • Охлаждение жидким диэлектриком с принудительной циркуляцией воздуха — НД
  • Охлаждение негорючим жидким диэлектриком с принудительной циркуляцией воздуха и с направленным потоком жидкого диэлектрика — ННД

Наряду с трансформаторами широко применяются автотрансформаторы, в которых имеется электрическая связь между первичной и вторичной обмотками. При этом мощность из одной обмотки автотрансформатора в другую передается как магнитным полем, так и за счет электрической связи. Автотрансформаторы строятся на большие мощности и высокие напряжения и применяются в энергосистемах, а также используются для регулирования напряжения в установках небольшой мощности.

Номинальные данные трансформаторов

Номинальные данные трансформатора, на которые он рассчитан с заводской гарантией на 25 лет указываются в паспортной табличке трансформатора :

номинальная полная мощность Sном, КВ-А,

номинальное линейное напряжение U л.ном, В или кВ,

номинальный линейный ток I л.ном. А,

номинальная частота f , Гц,

схема и группа соединения обмоток,

напряжение короткого замыкания Uк, %,

В табличке приводятся также данные, необходимые для монтажа: полная масса, масса масла, масса выемной (активной) части трансформатора. Указываются тип трансформатора в соответствии с ГОСТ на марки трансформаторов и завод-изготовитель.

Номинальная мощность однофазного трансформатора Sном= U1 ном I1 ном, a трехфазного

где U1 лном, U1 фном, I1 лном и I1 фном — соответственно номинальные линейные и фазные значения напряжений и токов.

Номинальными напряжениями трансформатора являются линейные напряжения при холостом ходе на первичной и вторичной обмотках трансформатора. За номинальные токи первичной и вторичной обмоток трансформатора принимаются токи, рассчитанные по номинальной мощности при номинальных первичных и вторичных напряжениях.

Ввиду общности конструкции и методов расчета к трансформаторам могут быть отнесены реакторы, дроссели насыщения и сверхпроводящие индуктивные накопители.

Типы и классификация трансформаторов

Трансформаторы – особый вид оборудования, применяемый для изменения показателей напряжения в электросетях с переменным током. В основе его работы лежит такое явление как электромагнитная индукция – первичная обмотка присоединяется к источнику тока, после чего в ней начинает генерироваться магнитное поле, и во вторичных обмотках возникает электродвижущая сила.

Конструктивные особенности трансформаторов

В основе конструкции прибора находятся вторичные и первичные обмотки, сердечник из ферромагнитного сплава (обычно замкнутого типа). Обмотки располагают на магнитном проводе, они связаны между собой индуктивным способом. Благодаря наличию магнитопривода аккумулируется значительная часть магнитного поля, и КПД устройства возрастает. Сам магнитопровод представляет собой комплекс металлических пластин, покрытых изоляцией. Изоляция нужна для предотвращения появления паразитных токов в сердечнике.

Принципы классификации трансформаторов

Трансформаторы классифицируются по следующим принципам:

  1. Назначение (лабораторные, защитные, промежуточные, измерительные).
  2. Напряжение (низко- и высоковольтные).
  3. Способ установки (переносные, стационарные, наружные и внутренние, опорные, шинные).
  4. Количество ступеней (одно- и многоступенчатые).
  5. Характер изоляции обмотки (сухая, компаундная, бумажно-масляная).

Каждый тип прибора имеет свои особенности и преимущества, о которых мы поговорим далее. Ремонт трансформаторов всех видов должен производиться профессиональными мастерами с применением соответствующего оборудования.

Читать еще:  Шнеки буровые: раскрываем секреты

Типы трансформаторов

Самой распространенной категорией электрических трансформаторов являются силовые трансформаторы – они различаются между собой по количеству фаз, показателям номинального напряжения. Назначение – изменение напряжения тока в сетях освещения, питания оборудования, энергосистем.

Второй по популярности тип оборудования – измерительный. Он используется для контроля рабочих показателей напряжения, фазы или тока в первичной цепи. На измеряемую сеть работа прибора влияния практически не оказывает.

Третий тип – автотрансформаторы, обмотки в которых соединяются между собой гальваническим способом. Коэффициент трансформации невысокий, поэтому установка имеет сравнительно небольшие размеры и недорого стоит. Устанавливаются в стабилизаторах напряжения, системах релейной защиты, запуска крупных электроустановок, работающих от сети с переменным током.

Импульсные трансформаторы оборудуются феррогмагнитным сердечником, который изменяет напряжения и импульсы тока. Данный тип оборудования применяется в вычислительных устройства электронного типа, системах радиолокации, импульсной связи, в качестве главного измерителя в электросчетчиках.

Пик-трансформаторы преобразуют напряжение синусоидального типа в импульсное. Разделительные устройства отличаются от остальных тем, что в них первичная обмотка со вторичными не связана. Назначение прибора – гальваническая развязка электроцепей.

Согласующий трансформатор согласует показатели сопротивления каскадов схем таким образом, что сигнал практически не искажается. Согласующий трансформатор между рабочими участками создает схемы гальванической развязки.

Сдвоенный дроссель оснащается двумя идентичными обмотками. За счет взаимной индукции катушек дроссель имеет отличную эффективность, хотя имеет стандартные размеры. Используется в звуковой технике, в качестве фильтров блока питания. Для хранения информации обычно используется трансфлюксор – трансформатор с большой остаточной намагниченностью магнитопровода.

Все о трансформаторах тока. Классификация, конструкция, принцип действия

Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов (с больших на меньшие) до требуемых значений, с целью подключения приборов измерения, устройств РЗиА. Трансформаторы тока получили широкое применение в энергетике и являются составным элементом любой электростанции или подстанции.

Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.

  1. Конструкция и принцип действия трансформатора тока
  2. Классификация трансформаторов тока
  3. Трансформаторы тока разных производителей
  4. Трансформаторы тока ТОЛ-НТЗ-10-01
  5. Расположение вторичных выводов:
  6. Требования к надежности
  7. Пример условного обозначения опорного трансформатора тока с литой изоляцией
  8. Опорные трансформаторы тока TОП-0,66
  9. Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Конструкция и принцип действия трансформатора тока

Трансформаторы тока конструктивно состоят из:

  • замкнутого магнитопровода;
  • 2-х обмоток (первичной, вторичной).

Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.

Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.

К этим обмоткам в обязательном порядке должна быть подключена нагрузка.

Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

Интересное видео о трансформаторах тока смотрите ниже:

Погрешность ТТ определяется в зависимости от:

  • сечения магнитопровода;
  • проницаемости используемого для производства магнитопровода материала;
  • величины магнитного пути.

Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.

Предельное значение сопротивление нагрузки указывается в справочных материалах.

Классификация трансформаторов тока

Трансформаторы тока принято классифицировать по следующим признакам:

  1. В зависимости от назначения их разделяют на:
    1. защитные;
    2. измерительные;
    3. промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
    4. лабораторные.
  2. По типу установки разделяют устройства:
    1. наружной установки (размещаемые в ОРУ);
    2. внутренней установки (размещаемые в ЗРУ);
    3. встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
    4. накладные — устанавливаемые сверху на проходные изоляторы;
    5. переносные (для лабораторных испытаний и диагностических измерений).
  3. Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
    1. многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
    2. одновитковые;
    3. шинные.
  4. По способу исполнения изоляции ТТ разбивают на устройства:
    1. с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
    2. с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
    3. имеющие заливку из компаунда.
  5. По количеству ступеней трансформации ТТ бывают:
    1. одноступенчатые;
    2. двухступенчатые (каскадные).
  6. Исходя из номинального напряжения различают:
    1. ТТ с номинальным напряжением — выше 1 кВ;
    2. ТТ с напряжением – до 1 кВ.

Ещё одно интересное видео о схемах включения трансформаторов тока:

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

Трансформаторы тока ТОЛ-НТЗ-10-01

Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

Расположение вторичных выводов:
  • «А» — параллельно установочной поверхности;
  • «В» — перпендикулярно установочной поверхности;
  • «С» — из гибкого провода, параллельно установочной поверхности;
  • «D» — из гибкого провода, перпендикулярно установочной поверхности.

Требования к надежности

Для трансформаторов установлены следующие показатели надежности:

  • средняя наработка до отказа – 2´105 ч.;
  • полный срок службы – 30 лет.
Пример условного обозначения опорного трансформатора тока с литой изоляцией

ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

  • 10 — номинальное напряжение;
  • «0» — конструктивный вариант исполнения;
  • «1» — исполнение по длине корпуса;
  • «А» — вторичные выводы расположенные параллельно установочной поверхности;
  • «Б» — изолирующие барьеры;
  • 0,5S — класс точности измерительной вторичной обмотки;
  • (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
  • 10Р — класс точности защитной вторичной обмотки;
  • 10 — номинальная предельная кратность вторичной обмотки для защиты;
  • 5 — номинальная вторичная нагрузка обмотки для измерения;
  • 15 — номинальная вторичная нагрузка обмотки для защиты;
  • 300 — номинальный первичный ток;
  • 5 — номинальный вторичный ток;
  • 31,5 — односекундный ток термической стойкости;
  • «УХЛ» — климатическое исполнение;
  • 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

Опорные трансформаторы тока TОП-0,66

Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.

Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.

Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:

  • высота над уровнем моря не более 1000 м;
  • температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
  • окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
  • рабочее положение — любое.

Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.

Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Изготовитель — Фирма ООО «ABB»

Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

  • МЭК, VDE, ANSI, BS, ГОСТ и CSN.
  • Максимальное напряжение — 3.6 кВ — 25 кВ
  • Первичный ток — 600 A – 5000 A
  • Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
  • Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
  • Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.

Трансформатор тока: принцип работы и использование

Работа трансформатора тока (ТТ) основана на законе электромагнитной индукции, действующим в электрических и магнитных полях, изменяющихся по форме гармоник переменных синусоидальных величин.

ТТ применяются для измерения тока в приборах электроэнергетических систем. Они обеспечивают безопасность процедуры, так как позволяют изолировать первичную цепь с высоким напряжением от измерительной цепи. Кроме этого, трансформаторы позволяют выполнить моделирование определенных процессов и обеспечивают защиту электроустановок.

Принцип работы

Действие устройств базируется на явлении электромагнитной индукции. При подаче напряжения в ТТ через витки первой обмотки проходит переменный ток, который в дальнейшем формирует переменный магнитный поток. В результате большие величины преобразуются в те значения, которые безопасны и удобны для измерения.

Первичная обмотка запускается медленно и последовательно, чаще все она представляет собой алюминиевую или медную пластину, реже используются катушки. Для замыкания на нагрузку используется вторичная обмотка, в которой создается ток, его величина пропорциональна потоку в первом элементе.

Полученный ток проходит по сердечнику и перераспределяется во все обмотки, продуцируя в них электродвижущие силы. При включении в цепь последующих обмоток в их витках также образовывается вторичный ток.

Конструкция ТТ

Данные изделия можно встретить как в небольших электронных приборах, так и в значительных по объему энергетических установках. Различия между ними заключаются лишь в габаритах.

Конструктивно трансформаторы состоят из двух элементов:

  • замкнутый магнитопровод (сердечник);
  • 2 и более обмотки (первичная и вторичные).

Все детали помещаются в специальный корпус, который служит как защита от механических повреждений.

Основные характеристики

Одним из важнейших параметров ТТ является номинальное напряжение, то есть максимальные значения напряжения, при которых устройство может корректно работать. Этот показатель указывается в паспорте трансформатора, средняя цифра составляет от 0,66 до 750 кВ.

К числу основных параметров ТТ относят и коэффициент трансформации. Он определяется как отношение первичного тока к вторичному.

Другая важная характеристика систем – номинальный ток первичной сети (протекающий по первичной обмотке). Значение может составлять от 1 А до 40 тысяч А. Показатели вторичного тока всегда равняются 1 А или 5 А, по заказу изготавливаются модели с 2 А и 2,5 А.

Еще два важных параметра устройств – это электродинамическая и термическая стойкость. Первая – характеризует максимальную амплитуду тока короткого замыкания. Если сказать проще, то это способность трансформатора противостоять разрушающему воздействию короткого замыкания.

Термическая стойкость – это максимальный показатель для короткого замыкания, которое система может выдержать за определенный промежуток времени и не пострадать от высоких температур.

Виды трансформаторов тока по назначению

Выделяют следующие разновидности:

  • Измерительные. Подобные устройства служат для передачи токов на специальные приборы измерения. Используются, если прямое подключение измерителей невозможно или небезопасно. ТТ рассчитываются таким образом, чтобы минимально влиять на первичную цепь и минимизировать любые искажения силы тока.
  • Промежуточные. Применяются в целях релейной защиты, обеспечивают изоляцию тока в первичной и вторичной обмотке.
  • Лабораторные. Отличаются повышенной точностью, предназначаются для моделирования определенной силы тока.
  • Защитные. Подключаются к токовым цепям защиты. Нередко номинальный ток таких систем существенно отличается от тока сети. Производители присваивают защитным устройствам определенный класс точности, что позволяет использовать их в качестве измерительных.

Классификация по способу исполнения

Отдельно стоит рассматривать способ исполнения ТТ, так как в этом случае также существует несколько вариантов. Выделяют следующие виды:

  • Тороидальные. Устанавливаются на кабели или шины, поэтому первичная обмотка им вообще не нужна. Первичный ток в этом случае протекает по шине, проходит через сердечник и фиксируется вторичной обмоткой.
  • Сухие. У таких изделий первичная обмотка не имеет изоляции, поэтому свойства получаемого тока зависят от используемого коэффициента преобразования.
  • Высоковольтные (масляные и газовые). Используются для дополнительной защиты от короткого замыкания, а для измерительных работ – не годятся.

Варианты установки трансформаторов

Помимо назначения и способа исполнения, трансформатор тока можно разделить на несколько видов в зависимости от способа монтажа. Выделяют следующие устройства:

  • Переносные. Мобильные модели, которые служат для диагностических и лабораторных испытаний.
  • Накладные. Применяются для установки сверху на проходные изоляторы, отличаются компактностью и имеют специальные крепления для монтажа.
  • Встраиваемые. Такие изделия встроены в электрические машины или коммутационные аппараты (например, в генераторы или похожие устройства).

Дополнительно выделяют трансформаторы для наружной установки (нужны для ОРУ – открытых распределительных устройств) и внутреннего монтажа (для ЗРУ – закрытых распределительных устройств).

Независимо от типа и способа монтажа, все устройства, кроме встроенных, имеют специальную контактную площадку. С ее помощью подсоединяется заземляющий проводник и зажим, что, в конечном счете, максимально упрощает процесс установки.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector